Vehicle Propulsion Systems Lecture 12

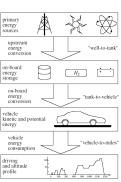
Summary of the Course

Lars Eriksson Associate Professor (Docent)

> Vehicular Systems Linköping University

December 12, 2010

Vehicle Propulsion Systems


A diversity of powertrain configurations is appearing

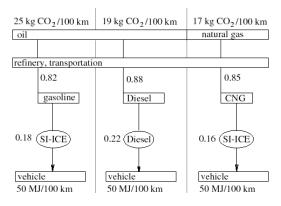
- Conventional Internal Combustion Engine (ICE) powertrain.
- Diesel, Gasoline, New concepts
- Hybrid powertrains Parallel/Series/Complex configurations
- Fuel cell electric vehicles
- Electric vehicles

Course goal:

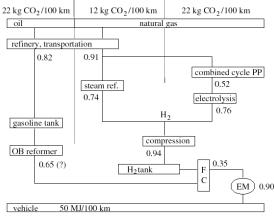
- Introduction to powertrain configuration and optimization problems
- Mathematical models and ...
- ... methods for
 - Analyzing powertrain performance
 - Optimizing the powertrain energy consumption

Energy System Overview

Primary sources


Different options for onboard energy storage

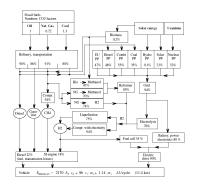
Powertrain energy conversion during driving


Cut at the wheel!

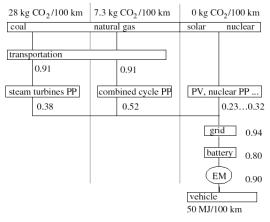
Driving mission has a minimum energy requirement.

W2M - Conventional Powertrains

W2M - Fuel Cell Electric Vehicle



Outline


Energy System for Vehicle Propulsion

Energy Consumption of a Driving Mission	primary	-
Methods and tools	energy sources	ŀ
IC Engine Models	upstream energy conversion	
Gear-Box and Clutch Models	on-board	ŕ
Hybrid-Electric Vehicles	storage	t
Electric motors, Generators	on-board energy conversion	
	vehicle kinetic and pote	ent
	energy	
Short Term Storage	vehicle energy consumption	1
Fuel Cells	driving and altitude	
Reformers	profile	_
Case study 6: Fuel Optimal Trajectories of a Racing FCEV		

Example of Some Energy Paths

W2M - Electric Vehicle

Outline

Energy System for Vehicle Propulsion

Energy Consumption of a Driving Mission

Methods and tools

- IC Engine Models
- Gear-Box and Clutch Mode
- Hydrid-Electric vehicles
- Lieune motors, Generator
- Dalleries, Super C
- Optimal Contro
- Short Term Storag
- i uei Oeli
- Reforme
- Case study 6: Fuel Optimal Trajectories of a Racing FCEV

Vehicle Operating Modes

The Vehicle Motion Equation:

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

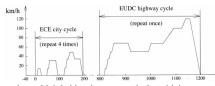
- $F_t > 0$ traction
- $F_t < 0$ braking
- $F_t = 0$ coasting

$$\frac{d}{dt}v(t) = -\frac{1}{2m_v}\rho_a A_f c_d v^2(t) - g c_r = \alpha^2 v^2(t) - \beta^2$$

Coasting solution for v > 0

$$\mathbf{v}(t) = \frac{\beta}{\alpha} \tan\left(\arctan\left(\frac{\alpha}{\beta}\,\mathbf{v}(\mathbf{0})\right) - \alpha\,\beta\,t\right)$$

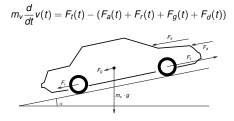
Fuel Consumption Demand – Values for cycles



Numerical values for MVEG-95, ECE, EUDC

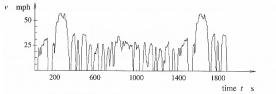
$$\begin{split} \tilde{F}_{trac,a} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h = \\ \tilde{F}_{trac,r} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h = \\ \tilde{F}_{trac,m} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h = \\ \tilde{F}_{trac,m} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h = \\ \end{split}$$

 $\bar{E}_{MVEG.95} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10$ kJ/100 kmTasks in Hand-in assignment


Energy demand again - Recuperation

The Vehicle Motion Equation

Newtons second law for a vehicle



- F_a aerodynamic drag force
- F_r rolling resistance force
- ► F_g gravitational force
- ► F_d disturbance force

Driving profiles

Velocity profile, American FTP-75 (1.5*FUDS).

Driving profiles in general

- First used for pollutant control now also for fuel cons.
- Important that all use the same cycle when comparing.
- Different cycles have different energy demands.

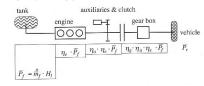
Approximate car data

$\bar{E}_{MVEG-95} \approx A_f c_d 1.9$	$10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10^2$	<i>kJ/</i> 100 <i>km</i>

	SUV	full-size	compact	light-weight	PAC-Car II
$A_f \cdot c_d$	1.2 m ²	0.7 m ²	0.6 m ²	0.4 m ²	.25 · .07 m ²
Cr	0.017	0.017	0.017	0.017	0.0008
m _v	2000 kg	1500 kg	1000 kg	750 kg	39 kg
P _{MVEG-95}	11.3 kW	7.1 kW	5.0 kW	3.2 kW	
\bar{P}_{max}	155 kW	115 kW	77 kW	57 kW	

Average and maximum power requirement for the cycle.

Outline


Energy System for Vehicle Propulsion Energy Consumption of a Driving Mission Methods and tools IC Engine Models Gear-Box and Clutch Models Hybrid-Electric Vehicles Electric motors, Generators Batteries, Super Capacitors Optimal Control Short Term Storage

Reforme

Case study 6: Fuel Optimal Trajectories of a Racing FCEV

Methods and tools

Average operating point method.

One task among in the Hand-in assignments.

Two Approaches for Powertrain Simulation

Dynamic simulation (forward simulation)

Cycle - Driver - Engine - Transm. - Wheel - Vehicle

- -"Normal" system modeling direction -Requires driver model
- Quasistatic simulation (inverse simulation)

Cycle Vehicle Wheel Transm. Engine

- –"Reverse" system modeling direction–Follows driving cycle exactly
- Model causality

Outline

Energy System for Vehicle Propulsion Energy Consumption of a Driving Mission Methods and tools

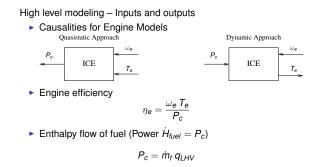
IC Engine Models

Gear-Box and Clutch Mode Hybrid-Electric Vehicles

Electric motors, Generators

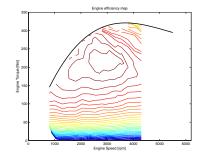
Batteries, Super Capacitor

Optimal Control


Short Term Stora

Fuel Cell

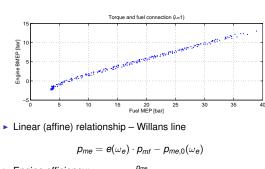
Reforme


Case study 6: Fuel Optimal Trajectories of a Racing FCEV

Causality and Basic Equations

Engine Efficiency Maps

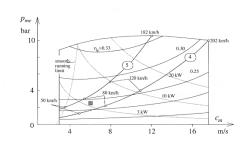
Measured engine efficiency map - Used very often



-What to do when map-data isn't available?

Gear-Box and Clutch Models

Outline


Torque modeling through − Willans Line Measurement data: x: p_{mf} y: p_{me} = BMEP

• Engine efficiency: $\eta_{e} = \frac{p_{me}}{p_{mf}}$

Selection of Gear Ratio

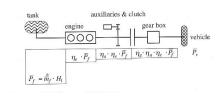
Gear ratio selection connected to the engine map.

Additionally: Also geometric ratio between gears. $\frac{i_{g,1}}{i_{g,2}} \approx \frac{i_{g,2}}{i_{g,3}} \approx \frac{i_{g,3}}{i_{g,4}} \approx \frac{i_{g,4}}{i_{g,5}}$

Case study 6: Fuel Optimal Trajectories of a Racing FCEV

Average Operating Point Method

- Optimizing gear ratio for a certain cycle.
 - Potential to save fuel.


Quasistatic analysis - Layout

quality)

Definition

Hand-in assignment.

Case study 8.1 (we'll look at it later).

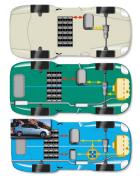
- Average operating point method –Good agreement for conventional powertrains.
- Hand-in assignment.

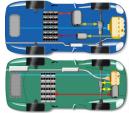
Outline

- Energy System for Vehicle Propulsion
- Acthoda and toola
- Goor Poy and Clutch Mad

Hybrid-Electric Vehicles

- Electric motors, Generator
- Batteries, Super Capacitor
- **Optimal Contro**
- Short Term Storage
- Fuel Cells
- Reformers
- Case study 6: Fuel Optimal Trajectories of a Racing FCEV


Potential for Energy Savings


Benefits of Hybrid-Electric Vehicles

- Downsize engine while maintaining maximum power requirement
- Recover energy during deceleration (recuperation)
- Optimize energy distribution between prime movers
- Eliminate idle fuel consumption by turning of the engine (stop-and-go)
- Eliminate the clutching losses by engaging the engine only when the speeds match

Possible improvements are counteracted by a 10-30% increase in weight.

Hybrid concepts

Series Parallel S/A

_ic I/100 kn

More details and better agreement (depends on model)

-Good agreement for general powertrains

What characterizes a Hybrid-Electric Vehicle

Presence of an electrochemical or electrostatic energy

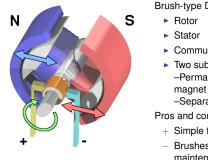
Energy carrier is a fossil-fuel.

storage system.

Parallel Combined

Degree of Hybridization

- Degree of hybridization
- The ratio between electric motor power and engine power.Implemented hybrid concepts in cars
- Degree of hybridization varying between 15–55%
- True mild hybrid concepts Degree of hybridization varying 2–15%

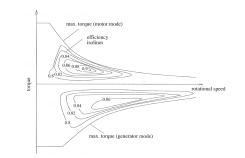

Electric

Outline

The 4 Quadrants

		·	
Energy System for Vehicle Propulsion			
Energy Consumption of a Driving Mission		Т	
Methods and tools	/	Ν	
IC Engine Models	0	_	
Gear-Box and Clutch Models	2	1	
Hybrid-Electric Vehicles	Braking	Driving	
Electric motors, Generators			ω
		>	
	Driving	Braking	
Short Term Storage			
Fuel Cells	3	4	
Reformers			
Case study 6: Fuel Optimal Trajectories of a Racing FCEV			

Brushed DC-Machine



Wikipedia picture

Brush-type DC motor:

- Rotor
- Stator
- Commutator
- Two subtypes:
- -Permanent
- -Separately excited
- Pros and cons
 - + Simple to control
 - Brushes require maintenance

Two Quadrant Maps for η_m

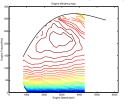
Mirroring efficiency is not always sufficient.

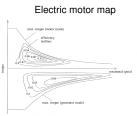
Batteries

- Energy storage devices Energy density important
- Performance Power density important
- Durability _

_

	Energy	Power	cycles
Battery type	Wh/kg	W/kg	
Lead-acid	40	180	600
Nickel-cadmium	50	120	1500
Nickel-metal hydride	70	200	1000
Lithium-ion	130	430	1200


Outline


Batteries, Super Capacitors

Component modeling

- Model energy (power) transfer and losses
- Using maps
- Using parameterized (scalable) models

Combustion engine map

Outline

Optimal Control

Optimal Control – Problem Motivation

Car with gas pedal u(t) as control input: How to drive from A to B on a given time with minimum fuel consumption?

- Infinite dimensional decision variable u(t).
- Criterion function $\int_0^{t_f} \dot{m}_f(t) dt$
- Constraints:
 - Model of the car (the vehicle motion equation)

$$\begin{array}{rcl} m_v \frac{d}{dt} v(t) &=& F_t(v(t), u(t)) & -(F_a(v(t)) + F_r(v(t)) + F_g(x(t))) \\ \frac{d}{dt} x(t) &=& v(t) \\ \dot{m}_f &=& f(v(t), u(t)) \end{array}$$

- Starting point x(0) = A
 End point x(t_f) = B
- Speed limits $v(t) \le g(x(t))$ Limited control action $0 \le u(t) \le 1$
- In general difficult (impossible) problem to solve.

Calculation Example

- Problem 200s with discretization $\Delta t = 1$ s.
- Control signal discretized with 10 points.
- Statespace discretized with 1000 points.
- ► One evaluation of the model takes 1µs
- Solution time:
 - Brute force:
 - Evaluate all possible combinations of control sequences. Number of evaluations, 10^{200} gives $\approx 3\cdot 10^{186}$ years.
 - Dynamic programming: Number of evaluations: 200 · 10 · 1000 gives 2 s.

This example comes from ETH slides

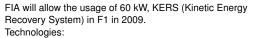
Dynamic Programming (DP) - Problem Formulation

Find the optimal control sequence $\pi^{0}(x_{0}) = \{u_{0}, u_{1}, \dots, u_{N-1}\}$ minimizing:

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k)$$

SI

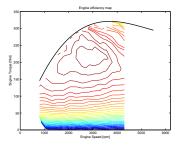
$$egin{aligned} x_{k+1} &= f_k(x_k, u_k, w_k) \ x_0 &= x(t=0) \ x_k \in X_k \ u_k \in U_k \end{aligned}$$

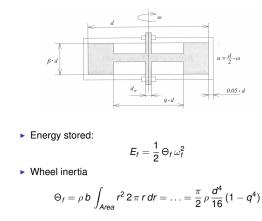

Disturbance w_k

Stochastic vs deterministic DP

Outline

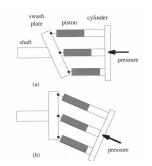
Short Term Storage


Short Term Storage - F1

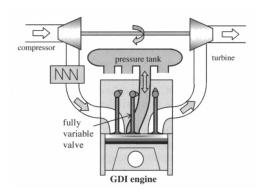

- Flywheel
- Super-Caps

Basic Principles for Hybrid Systems

- Kinetic energy recovery
- Use these points Duty cycle.
 - Run engine (fuel converter) at its optimal point. Shut-off the engine.

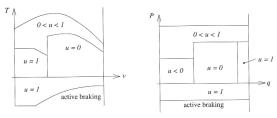


Flywheel accumulator



Examples of Short Term Storage Systems

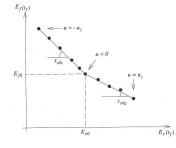
Hydraulic Pumps



Pneumatic Hybrid Engine System

Heuristic Control Approaches

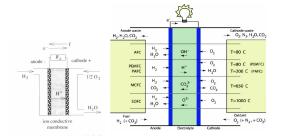
Parallel hybrid vehicle (electric assist)



 Determine control output as function of some selected state variables: vehicle speed, engine speed, state of charge, power

demand, motor speed, temperature, vehicle acceleration, torque demand

Determining Equivalence Factors II


 Collecting battery and fuel energy data from test runs with constant u gives a graph

▶ Slopes determine *s*_{dis} and *s*_{chg}

Fuel Cell Basic Principles

- Convert fuel directly to electrical energy
- Let an ion pass from an anode to a cathode
- Take out electrical work from the electrons

ECMS – Equivalent Consumption Minimization Strategy

• μ_0 depends on the (soft) constraint

$$\mu_0 = \frac{\partial}{q(t_f)}\phi(q(t_f)) = /\text{special case} / = -w$$

Different efficiencies

$$\mu_0 = \frac{\partial}{\partial q(t_f)} \phi(q(t_f)) = \begin{cases} -w_{dis}, & q(t_f) > q(0) \\ -w_{chg}, & q(t_f) > q(0) \end{cases}$$

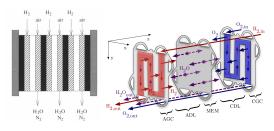
 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b \, Q_{max}}$$

ECMS - Equivalent Consumption Minimization Strategy

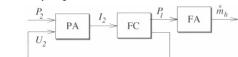
Outline

Energy System for Venicle Propulsion Energy Consumption of a Driving Mission Methods and tools IC Engine Models Gear-Box and Clutch Models Hybrid-Electric Vehicles


- Electric motors, Generators
- Batteries, Super Capacito
- **Optimal Control**
- Short Term Storage

Fuel Cells

aso study 6: Eucl Optimal Trajectories of a Racing ECEV


Fuel Cell Stack

- The voltage out from one cell is just below 1 V.
- Fuel cells are stacked.

Quasistatic Modeling of a Fuel Cell

Causality diagram

- Power amplifier (Current controller)
 - Fuel amplifier (Fuel controller)
 - Standard modeling approach

- Fuel Cell Thermodynamics
 - Starting point reaction equation

 $H_2 + \frac{1}{2} O_2 \Rightarrow 2 H_2 O_2$

$$H = U + \rho V$$

Hydrogen storage is problematic - Challenging task.

Liquid phase - Cryogenic storage, -253°C.

Some examples of different options.
 High pressure bottles

Sodium borohydride NaBH4

Metal hydride

Reversible energy – Gibbs free energy G

$$G = H + TS$$

 $U_{rev} = \eta_{id} U_{id}$

Open circuit cell voltages

$$-rac{\Delta G}{n_e F}, \qquad \qquad U_{id} = -rac{\Delta H}{n_e F},$$

F – Faradays constant ($F = q N_0$)

Under load

 $U_{rev} =$

$$P_{l} = I_{fc}(t) \left(U_{id} - U_{fc}(t) \right)$$

Single Cell Modeling

Fuel cell voltage

$$U_{fc}(t) =_{rev} -U_{act}(t) - U_{ohm} - U_{cond}$$

 Activation energy – Get the reactions going Semi-empirical Tafel equation

$$U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$$

Ohmic – Resistance to flow of ions in the cell

$$U_{ohm} = i_{fc}(t) \, \tilde{R}_{fc}$$

 Concentration, change in concentration of the reactants at the electrodes

$$U_{conc} = c_2 \cdot i_{fc}(t)^{c_3}$$
, or $U_{conc} = \dots$

Outline

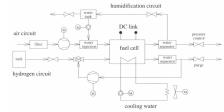
Energy System for Vehicle Propulsion Energy Consumption of a Driving Mission Methods and tools IC Engine Models Gear-Box and Clutch Models Hybrid-Electric Vehicles Electric motors, Generators Batteries, Super Capacitors Optimal Control Short Term Storage

Reformers

Case study 6: Fuel Optimal Trajectories of a Racing FCEV

► Polarization curve of a fuel cell Relating current density $I_{fc}(t) = I_{fs}(t)/A_{fc}$, and cell voltage $U_{fc}(t)$

Curve for one operating condition

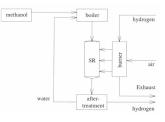

- Fundamentally different compared to combustion engine/electrical motor
- Excellent part load behavior
 When considering only the cell

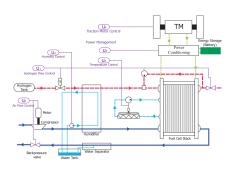
Fuel Cell System Modeling

Describe all subsystems with models

$$P_2(t) = P_{st}(t) - P_{aux}(t)$$

 $P_{aux} = P_0 + P_{\partial m}(t) + P_{ahp}(t) + p_{hp}(t) + P_{cl}(t) + p_{cf}(t)$ em–electric motor, ahp – humidifier pump, hp – hydrogen recirculation pump, cl – coolant pump, cf – cooling fan.




 Submodels for: Hydrogen circuit, air circuit, water circuit, and coolant circuit

Reformers

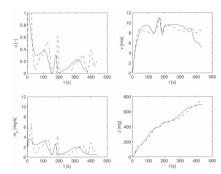
 Fuel cells need hydrogen – Generate it on-board –Steam reforming of methanol.

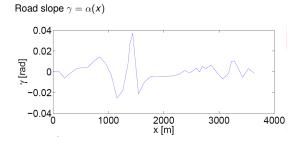
$$2 \, \textit{CH}_3\textit{OH} + \textit{O}_2 \Rightarrow 2 \, \textit{CO}_2 + 4 \, \textit{H}_2$$

Outline

- Energy System for Vehicle Propulsion
- Energy Consumption of a Driving Missio
- Methods and tools
- IC Engine Models
- Gear-Box and Clutch Mode
- Hybrid-Electric Vehicles
- Electric motors, Generators
- Datteries, Super Ca
- Short Torm Stores
- Fuel Cells
- Reforme
- Case study 6: Fuel Optimal Trajectories of a Racing FCEV

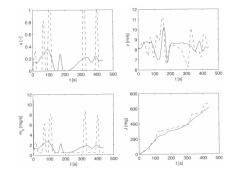
Problem Setup


Run a fuel cell vehicle optimally on a racetrack


- Start up lap
- Repeated runs on the track
- Path to the solution
 - Measurements Model
 Simplified model
 - Optimal control solutions

Fuel Optimal Trajectory - Start

Fuel optimal trajectory has 7% lower fuel consumption



Problem Setup – Road Slope Given

Fuel Optimal Trajectory – Continuous Driving

Fuel optimal trajectory has 9% lower fuel consumption

