Fuel-optimal Control of Heavy Trucks

Ph.D. Student Erik Hellström hellstrom@isy.liu.se

Vehicular Systems Dept. of Electrical Engineering

October 12, 2009

Erik Hellström (Linköping University)

Fuel-Optimal Control

Motivation : Cost

Objective

Scenario

- Long-haulage heavy truck on open road
- An on-board road topography map

Controls

- Engine and brake torque (continuous)
- Gear ratio selection (discrete)

Minimum-fuel strategy for a drive mission with a given maximum trip time

minimize Msubject to $T < T_0$

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 2 / 31

Motivation : Environment

Class 8 trucks

- typically travels at operating points with high efficiency
- on the other hand, they
 - consume 68 % of all commercial truck fuel used
 - 70% of this amount is spent traveling on open road with a trip length of more than 100 miles (161 km)

In the U.S. according to (Bradley, 2000)

Summary

- Fuel is a large share of the life cycle cost
- Any technology that improves truck efficiency will have the best benefit for long-haul class 8 trucks

Fuel-Optimal Control

October 12, 2009

1 / 31

• Background

Introduction

• An Efficient Algorithm

• Experimental Evaluation

• Concluding Remarks

Erik Hellström (Linköping University)

Objective

Minimum-fuel strategy for a drive mission with a given maximum trip time

minimize M

subject to $T \leq T_0$

- Conditions change during a drive mission
 - Disturbances such as delays
 - Changed parameters such as the mass
- Efficient approach is to consider a truncated horizon, a receding horizon approach

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 6 / 31

Using calculus of variations, the solution is shown to be a constant speed level v > 0, if we assume that

$$rac{\partial F_d}{\partial v} \geq 0$$
 and $F_d(s,v) = f_1(s) + f_2(v).$

Fuel-Optimal Control

 Drive mission $s \in [0, S], S > H$

Fuel-Optimal Control

The criterion is defined for $s \in [0, S]$:

but we consider it for $s \in [0, H]$:

 $J = \min M(S)$

 $\approx \min M(H) + \tilde{R}(x(H))$

October 12, 2009

5 / 31

where \tilde{R} is an estimate of the residual cost and a function of the terminal state x(H).

Objective defined

Erik Hellström (Linköping University)

The problem is to find the fuel-optimal control law for a finite horizon

Key Features

The power to mass ratio makes

- moderate slopes significant
- velocity variations inevitable
- gear shifts necessary

Some challenges

- Already highly fuel-efficient
- Both real and integer variables
- A position-variant control law u(x, s) is expected
- Real-time requirements

Erik Hellström (Linköping University)

Fuel-Optimal Control

Potential to reduce the fuel

consumption.

October 12, 2009 9 / 31

An Efficient Algorithm

- Current main challenge is to find the solution efficiently
- We propose an algorithm based on dynamic programming (DP)
- Exponential increase of complexity in DP due to continuous variables
 - No issue here since the dimension is low
- Favorable linear growth with increasing horizon
 - A rather long horizon is needed
 - Alternative methods typically give a complex combinatorial problem due to integer variables
- Allows general modeling

Approaches

- Shorter horizon
 - Better estimate of the residual cost at the end of the horizon
- Fewer grid points
 - Lowering the dimension and reducing the search space
- Erik Hells Goar (ER, grid and ty) nterpolation together, with simple integration 11/31
 - An analysis of errors due to discretization and interpolation shows that

Outline

- Background
- Introduction
- An Efficient Algorithm
- Experimental Evaluation
- Concluding Remarks

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 10 / 31

Residual Cost

 $\Delta M \approx \gamma \Delta W$

 A change in kinetic energy Δe at the end of the horizon is approximately proportional to a fuel mass

$$\Delta M \approx \gamma \Delta e$$

- This reflects that kinetic energy at the end of the horizon can be used to save fuel in the future
- With this assumption, the residual cost is

 $\tilde{R} = C - \gamma e$

where C can be chosen to zero.

- We have also shown that this is accurate in the unconstrained case
- For the general case, numerical results show that this is reasonable

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 13 / 31

Lowering The Dimension : Finding β

• The function $T(\beta)$ is monotonically decreasing

 $T(\beta_2) \leq T(\beta_1) \text{ iff } \beta_2 \geq \beta_1 > 0$

- β could be found by, e.g., simple shooting methods
- We derive an approximate value of β

A vehicle travels at speed \hat{v} on level road for Δs . Then, typically $F_d(s, v) = F_d(v)$ and we have $J(\hat{v}) = M + \beta T$ where

$$M = \gamma \Delta W = \gamma F_d(\hat{v}) \Delta s$$
 and $T = rac{\Delta s}{\hat{v}}$

In a stationary point, $J'(\hat{v}) = 0$, it holds that $\beta = \gamma \hat{v}^2 F'_d(\hat{v})$, where typically $F'_d(\hat{v}) = F'_{air}(\hat{v})$

 $\beta = 2\gamma P_{\mathsf{air}}(\hat{\mathbf{v}}) \quad (g/s)$

$$J = \min_{T=T_0} M \quad (P1)$$
$$\begin{bmatrix} t \\ v \\ g \end{bmatrix}' = f(s, v, g, u)$$
$$\begin{bmatrix} v \\ g \end{bmatrix}' = \tilde{f}(s, v, g, u)$$

For a given β , the solution for (P2) gives a trip time $T = T(\beta)$. If we find β such that $T(\beta) = T_0$, then we have the solution for (P1) as well.

Time is no longer necessary as a state, instead we have to find β .

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 14 / 31

Algorithm : Summary

• We consider (P2) for $s \in [0, H]$, i.e.,

$$\min\left\{M+\beta T+\tilde{R}\right\}$$

where $ilde{R} = -\gamma e(H)$ and $eta = 2\gamma P_{\mathsf{air}}(\hat{m{v}}).$

Solved through DP

• Energy formulation of the dynamics makes it possible to use coarse grids together with linear interpolation and Euler forward integration

Fuel-Optimal Control

E. Hellström, J. Åslund, and L. Nielsen.

Design of an efficient algorithm for fuel-optimal look-ahead control. Solicited for Control Engineering Practice.

Erik Hellström (Linköping University)

A Solution

Evaluation Setup

- Collaboration with SCANIA
- GPS and road database on board

lube	Search	for	Look-ahead	Control

E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen.

Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Engineering Practice, 17(2):245–254, 2009.

You

Louice

About 40,000 kg

84 km/h ± 5 km/h
1500 m horizon

• 5 cylinder, 9 liter engine

Max. 1550 Nm, 310 Hp12-speed transmission

Outline

- Background
- Introduction
- An Efficient Algorithm
- Experimental Evaluation
- Concluding Remarks

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 18 / 31

Evaluation Setup : Interface

- Feed the cruise controller with set speeds
- Model the automatic gear shift system

Erik Hellström (Linköping University)

120 km highway segment

Erik Hellström (Linköping University)

October 12, 2009

Experimental Results

- Five comparative runs
 - Algorithm parameters constant
 - Cruise controller set point varied

Trial Route : Topography

- Moderate slopes
- Light to moderate traffic

Average Results

Average over four runs back and forth

The Hållet Segment

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 25 / 31

The Hållet Segment : Characteristics

The Järna Segment

The Järna Segment : Characteristics

Concluding Remarks

- An efficient optimization algorithm is tailored based on DP
 - Energy formulation of the dynamics is a key point
 - Sufficiently low complexity make experimental evaluation feasible
- The look-ahead control strategy is evaluated in trial runs
 - Significant reduction of the fuel consumption is demonstrated
 - The behavior is perceived as natural and comfortable
 - Quantification of the optimal characteristics

Fuel-optimal Control of Heavy Trucks

Ph.D. Student Erik Hellström hellstrom@isy.liu.se

Vehicular Systems Dept. of Electrical Engineering

October 12, 2009

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 29 / 31

Erik Hellström (Linköping University)

Fuel-Optimal Control

October 12, 2009 30 / 31

An Energy Perspective

