Vehicle Propulsion Systems Lecture 7

Supervisory Control Algorithms

Lars Eriksson Associate Professor (Docent)

Vehicular Systems Linköping University

November 9, 2011

Outline

Repetition

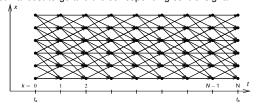
3/32

Deterministic Dynamic Programming - Basic algorithm

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

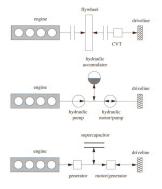
Algorithm idea:

Start at the end and proceed backward in time to evaluate the optimal cost-to-go and the corresponding control signal.

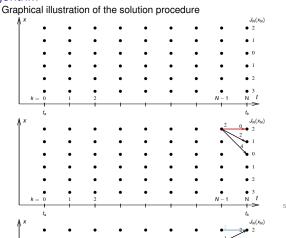


1/32

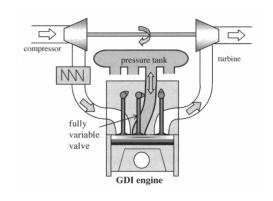
Examples of Short Term Storage Systems



Deterministic Dynamic Programming - Basic



Pneumatic Hybrid Engine System

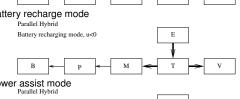


Parallel Hybrid - Modes and Power Flows

The different modes for a parallel hybrid

 $u \approx P_{batt}/P_{vehicle}$

Battery recharge mode

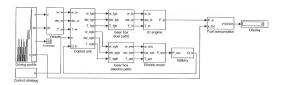


Power assist mode Power assist mode, 0<u<1

Outline

Supervisory Control Algorithms

Control algorithms



Determining the power split ratio u

$$u_j(t) = \frac{P_j(t)}{P_{m+1}(t) + P_l(t)}$$
 (4.110)

10/32

- ▶ Clutch engagement disengagement $B_c \in \{0, 1\}$
- ▶ Engine engagement disengagement $B_e \in \{0, 1\}$

Strategies for the Parallel Hybrid

Power split u, Clutch B_c , Engine B_e

	Mode	и	B_e	B_c
1	ICE	0	1	1
2a	ZEV	1	0	0
2b	ZEV	1	0	1
3	Power assist	[0,1]	1	1
4	Recharge	< 0	1	1
5a	Regenerative braking	1	0	0
5a	Regenerative braking	1	0	1

All practical control strategies have engine shut off when the torque at the wheels are negative or zero; standstill, coasting and braking.

11/32

Classification I of Supervisory Control Algorithms

- ▶ Non-causal controllers
 - ▶ Detailed knowledge about future driving conditions.
 - Position, speed, altitude, traffic situation.
 - Uses:

Regulatory drive cycles, public transportation, long haul operation, GPS based route planning.

- Causal controllers
 - ▶ No knowledge about the future...
 - Use information about the current state.
 - Uses:

"The normal controller", on-line, in vehicles without planning

Classification II of Vehicle Controllers

- ► Heuristic controllers
 - -State of the art in most prototypes and mass-production.
- Optimal controllers
 - -Inherently non-causal
- Sub-optimal controllers
 - -Often causal

13/3

Some Comments About the Problem

- ► Difficult problem
- Unsolved problem for causal controllers.
- Rich body of engineering reports and research papers on the subject
 - -This can clearly be seen when reading chapter 7!

Outline

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems
ECMS – Equivalent Consumption Minimization Strategy

15/32

Heuristic Control Approaches

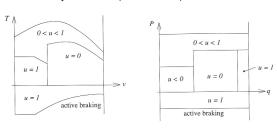
Operation usually depends on a few vehicle operation

- ► Rule based: Nested if-then-else clauses if v < v_{low} then use electric motor (u=1). else...
- Fuzzy logic based
 Classification of the operating condition into fuzzy sets.
 Rules for control output in each mode.
 Defuzzyfication gives the control output.

Heuristic Control Approaches

torque demand.

Parallel hybrid vehicle (electric assist)



 Determine control output as function of some selected state variables:
 vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration,

Heuristic Control Approaches - Concluding Remarks

- Easy to conceive
- ▶ Relatively easy to implement
- Proper tuning can give good fuel consumption reduction and charge sustainability
- Result will depend on the thresholds
- Performance will vary with cycle and driving condition –Not robust.

18/32

Outline

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

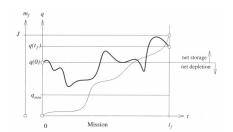
Optimal Control Strategies

Analytical solutions to Optimal Control Problems
ECMS – Equivalent Consumption Minimization Strategy

19/32

Consider a driving mission

Variables. Control signal − u(t), System state − x(t), State of charge q(t) (is a state).



20/32

Formulating the Optimal Control Problem

-What is the optimal behaviour? Defines Performance index J.

▶ Minimize the fuel consumption

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) dt$$

▶ Balance between fuel consumption and emissions

$$J = \int_0^{t_f} \left[\dot{m}_f(t, u(t)) + \alpha_{CO} \dot{m}_{CO}(x(t), u(t)) + \alpha_{NO} \dot{m}_{NO}(x(t), u(t)) + \alpha_{HC} \dot{m}_{HC}(x(t), u(t)) \right] dt$$

Include driveability criterion

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) + \beta \left(\frac{d}{dt}a(t)\right)^2 dt$$

21/35

First Solution to the Problem

▶ Minimize the fuel consumption

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) dt$$

22/32

Including constraints

Hard or soft constraints

$$min J(u) = \int_{t_a}^{t_b} L(t, u(t)) dt$$
s.t. $q(0) = q(t_f)$

$$\min \ J(u) = \phi(q(t_f)) + \int_{t_a}^{t_b} L(t,u(t)) dt$$

▶ How to select $\phi(q(t_f))$?

$$\phi(q(t_f)) = \alpha (q(t_f) - q(0))^2$$

penalizes high deviations more than small, independent of sign

$$\phi(q(t_f)) = w(q(0) - q(t_f))$$

penalizes battery usage, favoring energy storage for future use

▶ One more feature from the last one

23/

Including constraints

► Including battery penalty according to

$$\phi(q(t_f)) = w(q(0) - q(t_f)) = w \int_0^{t_f} \dot{q}(t)dt$$

enables us to rewrite

$$\min \ J(u) = \int_{t_a}^{t_b} L(t, u(t)) + w \, \dot{q}(t) dt$$

Constraints That are Also Included

- State equation $\dot{x} = f(x)$ is also included From Lecture 5
- Consider hybrid with only one state SoC

$$\begin{aligned} \min J(u) &= \phi(q(t_b), t_b) + \int_{t_a}^{t_b} L(t, u(t)) dt \\ s.t. &\frac{d}{dt}q = f(t, q(t), u(t)) \\ &u(t) \in U(t) \\ &q(t) \in Q(t) \end{aligned}$$

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems

ECMS - Equivalent Consumption Minimization Strategy

26/32

Analytical Solutions to Optimal Control Problems

 \blacktriangleright μ_0 depends on the (soft) constraint

$$\mu_0 = rac{\partial}{q(t_f)}\phi(q(t_f)) = / ext{special case}/ = -w$$

▶ Different efficiencies

$$\mu_0 = rac{\partial}{\partial q(t_f)}\phi(q(t_f)) = egin{cases} -w_{dis}, & q(t_f) > q(0) \ -w_{chg}, & q(t_f) < q(0) \end{cases}$$

 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b \, Q_{max}}$$

ECMS - Equivalent Consumption Minimization Strategy

28/3

Analytical Solutions to Optimal Control Problems

Core of the problem

$$\begin{aligned} &\min J(u) = \phi(q(t_b), t_b) + \int_{t_a}^{t_b} L(t, u(t)) dt \\ &s.t. \ \dot{q}(t) = f(t, q(t), u(t)) \end{aligned}$$

► Solution (theory from chapter 9)

$$u(t) = \underset{u}{\operatorname{arg\,min}} H(t, q(t), u(t), \mu(T))$$

with

$$H(t, q(t), u(t), \mu(T)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$$
$$\dot{\mu}(t) = -\frac{\partial}{\partial q} f(t, q(t), u(t))$$
$$\dot{q}(t) = f(t, q(t), u(t))$$

If $\frac{\partial}{\partial q} f(t, q(t), u(t)) = 0$ the problem becomes simpler. μ becomes a constant μ_0 , search for it when solving.

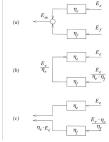
27/32

Determining Equivalence Factors I

Constant engine and battery efficiencies

$$s_{dis} = \frac{1}{\eta_e \, \eta_f}$$

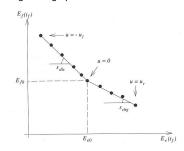
$$oldsymbol{s}_{ extit{chg}} = rac{\eta_{ extit{e}}}{\eta_{ extit{f}}}$$



29/3

Determining Equivalence Factors II

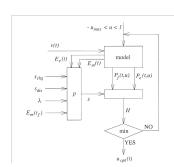
 Collecting battery and fuel energy data from test runs with constant u gives a graph



Slopes determine s_{dis} and s_{chg}.

ECMS On-line Implementation

Flowchart



There is also a T-ECMS (telemetry-ECMS)

·