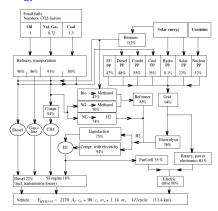
Vehicle Propulsion Systems Lecture 2

Fuel Consupmtion Estimation & ICE Powertrains

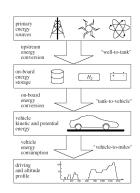
Lars Friksson Professor


Vehicular Systems Linköping University

November 3, 2015

Outline

Repetition


W2M - Energy Paths

6 / 51

8 / 51

Energy System Overview

Primary sources

Different options for onboard energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

Mechanical Energy Demand of a Cycle

Only the demand from the cycle

▶ The mean tractive force during a cycle

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_{0}^{x_{tot}} \max(F(x), 0) \, dx = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

where $x_{tot} = \int_0^{t_{max}} v(t) dt$.

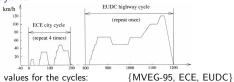
- ▶ Note $t \in trac$ in definition.
- ► Only traction.
- ▶ Idling not a demand from the cycle.

Evaluating the integral

Tractive force from The Vehicle Motion Equation

$$F_{trac} = rac{1}{2}
ho_a \, A_f \, c_d \, v^2(t) + m_v \, g \, c_r + m_v \, a(t)$$

$$ar{F}_{trac} = ar{F}_{trac,a} + ar{F}_{trac,r} + ar{F}_{trac,m}$$


Resulting in these sums

$$\bar{F}_{trac,a} = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i \in trac} \bar{v}_i^3 h$$

$$ar{F}_{trac,r} = rac{1}{x_{tot}} \, m_{V} \, g \, c_{r} \sum_{i \in trac} ar{v}_{i} \, h$$

$$ar{F}_{trac,m} = rac{1}{x_{tot}} m_{v} \sum_{i \in trac} ar{a}_{i} \, ar{v}_{i} \, h$$

Values for cycles

Numerical values for the cycles:

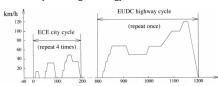
$$\bar{X}_{trac,a} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h =$$
 {319,82.9,455}

$$\bar{X}_{trac,r} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h =$$
 {0.856, 0.81, 0.88}

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \, \bar{v}_i \, h =$$
 {0.101, 0.126, 0.086}

 $\bar{E}_{\text{MVEG-95}} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10^4$ kJ/100km

Tasks in Hand-in assignment


Outline

Energy demand cont.

Energy demand and recuperation Sensitivity Analysis

Energy demand again - Recuperation

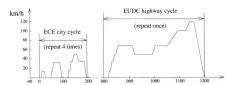
- ▶ Previously: Considered energy demand from the cycle.
- Now: The cycle can give energy to the vehicle.

Recover the vehicle's kinetic energy during driving.

Perfect recuperation

Mean required force

$$\bar{F} = \bar{F}_a + \bar{F}$$


► Sum over all points

$$\bar{F}_a = \frac{1}{x_{tot}} \frac{1}{2} \, \rho_a \, A_f \, c_d \sum_{i=1}^N \bar{v}_i^3 \, h$$

$$\bar{F}_r = \frac{1}{x_{tot}} m_v g c_r \sum_{i=1}^N \bar{v}_i h$$

10 / 51

Perfect recuperation - Numerical values for cycles

Numerical values for MVEG-95, ECE, EUDC

$$\bar{X}_a = \frac{1}{x_{tot}} \sum_i \bar{v}_i^3 h =$$
 {363, 100, 515}
 $\bar{X}_r = \frac{1}{x_{tot}} \sum_i \bar{v}_i h =$ {1, 1, 1}

 $\bar{E}_{\text{MVEG-95}} \approx A_f \, c_d \, 2.2 \cdot 10^4 + m_v \, c_r \, 9.81 \cdot 10^2$ kJ/100km

Comparison of numerical values for cycles

▶ Without recuperation.

$$\begin{split} \bar{X}_{trac,a} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 \ h = \\ \bar{X}_{trac,r} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i \ h = \\ \bar{X}_{trac,m} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \ \bar{v}_i \ h = \\ \end{split} \quad \begin{cases} 0.856, 0.81, 0.88 \} \\ 0.101, 0.126, 0.086 \end{cases} \end{split}$$

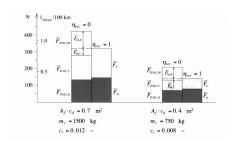
$$\bar{X}_{trac,r} = \frac{1}{x_{tot}} \sum_{i,\dots,r} \bar{v}_i h = \{0.856, 0.81, 0.88\}$$

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \, \bar{v}_i \, h =$$
 {0.101, 0.126, 0.086}

▶ With perfect recuperation

$$\bar{X}_a = \frac{1}{x_{tot}} \sum_i \bar{v}_i^3 h =$$
 {363, 100, 515}

$$\bar{X}_r = \frac{1}{x_{\text{tot}}} \sum_i \bar{v}_i h = \{1, 1, 1\}$$


kJ/100km

15 / 51

17 / 51

11 / 51

Perfect and no recuperation

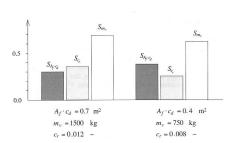
Mean force represented as liter Diesel $/\ 100\ km.$

Sensitivity Analysis

► Cycle energy reqirement (no recuperation) $\bar{E}_{\text{MVEG-95}} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10^4$

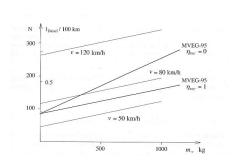
► Sensitivity analysis

$$S_p = \lim_{\delta p \to 0} \frac{\left[\bar{E}_{\text{MVEG-95}}(p + \delta p) - \bar{E}_{\text{MVEG-95}}(p)\right] / \bar{E}_{\text{MVEG-95}}(p)}{\delta p / p}$$

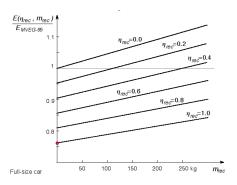

$$S_p = \lim_{\delta p \to 0} \frac{\left[\bar{E}_{\text{MVEG-95}}(p + \delta p) - \bar{E}_{\text{MVEG-95}}(p)\right]}{\delta p} \frac{p}{\bar{E}_{\text{MVEG-95}}(p)}$$

Vehicle parameters:

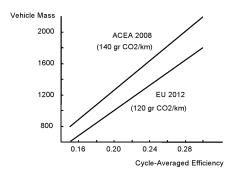
- \triangleright $A_f c_d$
- C_r
 m_v


14 / 51

Sensitivity Analysis


Vehicle mass is the most important parameter.

Vehicle mass and fuel consumption



16 / 51

Realistic Recuperation Devices

Vehicle Mass and Cycle-Avearged Efficiency

18/51

Outline

Repetition

Energy demand cont

Energy demand and recuperation

Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables

Engine Efficiency

Gear-Box and Clutch Models

Selection of Gear Ratio

Gear Boy Efficiency

Clutches and Torque Converter

Analysis of IC Powertrains

Average Operating Point

Quasistatic Analysis

Software tools

Two Approaches for Powertrain Simulation

► Dynamic simulation (forward simulation)

19 / 51

- -"Normal" system modeling direction
- -Requires driver model
- Quasistatic simulation (inverse simulation)

- -"Reverse" system modeling direction
- -Follows driving cycle exactly
- ► Model causality

20/51 21/51

Dynamic approach

- ightharpoonup Drivers input u propagates to the vehicle and the cycle
- ▶ Drivers input $\Rightarrow \ldots \Rightarrow$ Driving force \Rightarrow Losses \Rightarrow Vehicle velocity \Rightarrow Feedback to driver model
- Available tools (= Standard simulation) can deal with arbitrary powertrain complexity.

Quasistatic approach

- ► Backward simulation
- ▶ Driving cycle \Rightarrow Losses \Rightarrow Driving force \Rightarrow Wheel torque \Rightarrow Engine (powertrain) torque $\Rightarrow \ldots \Rightarrow$ Fuel consumtion.
- Available tools are limited with respect to the powertrain components that they can handle. Considering new tools such as Modelica opens up new possibilities.
- See also: Efficient Drive Cycle Simulation, Anders Fröberg and Lars Nielsen (2008) ...

22/51 23/51

Outline

Repetition

Energy demand cont.

Energy demand and recuperation

Sensitivity Analysis

Forward and Inverse (QSS) Model

IC Engine Models

Normalized Engine Variables Engine Efficiency

Gear-Box and Clutch Model

Selection of Gear Ratio

Gear-Box Efficiency

Clutches and Torque Convert

Analysis of IC Powertrain

Average Operating Poir Quasistatic Analysis

Causality and Basic Equations

High level modeling - Inputs and outputs

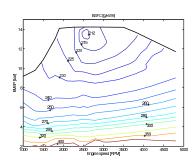
► Causalities for Engine Models

Quasistatic Approach

Dynamic Approach P_c ICE T_e

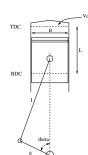
► Engine efficiency

$$\eta_e = \frac{\omega_e T_e}{P_c}$$


ullet Enthalpy flow of fuel (Power $\dot{H}_{\it fuel} = P_c$)

$$P_c = \dot{m}_f q_{LHV}$$

24/51 25/51


Engine Efficiency Maps

Measured engine efficiency map - Used very often

-What to do when map-data isn't available?

Engine Geometry Definitions

Cylinder, Piston, Connecting rod, Crank shaft

- ▶ Bore, B
- ▶ Stroke, S = 2a
- ► Number of cylinders z
- Cylinder swept volume, $V_d = \frac{\pi B^2 S}{4}$
- ▶ Engine swept volume, $V_d = z \frac{\pi B^2 S}{4}$
- lacktriangle Compression ratio $r_c = rac{V_{max}}{V_{min}} = rac{V_d + V_c}{V_c}$

26/51 27/51

Definition of MEP

See whiteboard.

Normalized Engine Variables

▶ Mean Piston Speed ($S_p = mps = c_m$):

$$c_m = \frac{\omega_e S}{\pi}$$

▶ Mean Effective Pressure (MEP= p_{me} ($N = n_r \cdot 2$)):

$$p_{me} = \frac{N \pi T_e}{V_d}$$

- ▶ Used to:
 - ► Compare performance for engines of different size
 - ▶ Design rules for engine sizing. At max engine power: $c_m \approx 17$ m/s, $p_{me} \approx 1$ e6 Pa (no turbo) \Rightarrow engine size
 - ► Connection:

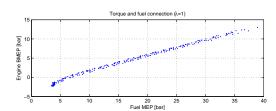
$$P_e = z \, \frac{\pi}{16} \, B^2 \, p_{me} \, c_m$$

29 / 51

31 / 51

33 / 51

Torque modeling through - Willans Line

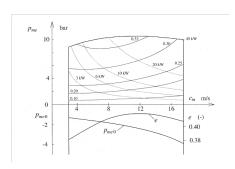

► Measurement data:

x: p_{mf}

y: $p_{me} = BMEP$

28 / 51

30 / 51


► Linear (affine) relationship – Willans line

$$p_{me} = e(\omega_e) \cdot p_{mf} - p_{me,0}(\omega_e)$$

► Engine efficiency:

 $\eta_e = \frac{p_{me}}{p_{me}}$

Engine Efficiency - Map Representation

Willans line parameters:

 $e(\omega_e)$

 $p_{me,0}(\omega_e)$

Outline

Repetition

Energy demand cont.

Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables

Gear-Box and Clutch Models

Selection of Gear Ratio Gear-Box Efficiency Clutches and Torque Converters

Analysis of IC Powertrains
Average Operating Poin
Quasistatic Analysis
Software tools

Causality and Basic Equations

Quasistatic Approach

▶ Causalities for Gear-Box Models

 $\begin{array}{c|c} & & & \gamma \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & \\$

► Power balance – Loss free model

$$\omega_1 = \gamma \omega_2, \qquad T_1 = -$$

Different Types of Gearboxes

- ► Manual Gear Box
- ▶ Automatic Gear Box, with torque converter
- ▶ Automatic Gear Box, with automated clutch
- ► Automatic Gear Box, with dual clutches (DCT)
- ► Continuously variable transmission

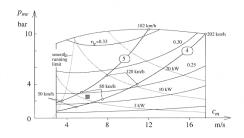
34 / 51

Connections of Importance for Gear Ratio Selection

► Vehicle motion equation:

$$m_{V} \frac{d}{dt} v(t) = F_{t} - \frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t) - m_{V} g c_{r} - m_{V} g \sin(\alpha)$$

Constant speed $\frac{d}{dt}v(t) = 0$:


$$F_t = \frac{1}{2} \rho_a A_f c_d v^2(t) + m_v g c_r + m_v g \sin(\alpha)$$

- ▶ A given speed v will require power $F_t v$ from the powertrain.
- ► This translates to power at the engine $T_e \omega_e$. Changing/selecting gears decouples ω_e and v.
- Required tractive force increases with speed.
 For a fixed gear ratio there is also an increase in required engine torque.

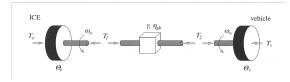
35 / 51

Selection of Gear Ratio

Gear ratio selection connected to the engine map.

Additionally: Also geometric ratio between gears. $\frac{i_{g,1}}{i_g,2} \approx \frac{i_{g,2}}{i_g,3} \approx \frac{i_{g,3}}{i_g,4} \approx \frac{i_{g,4}}{i_g,5}$

36 / 5

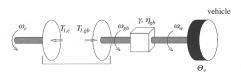

Selection of Gear Ratio

Optimizing gear ratio for a certain cycle.

- ▶ Potential to save fuel.
- ► Case study 8.1 (we'll look at it later).

37 / 5

Gear-box Efficiency

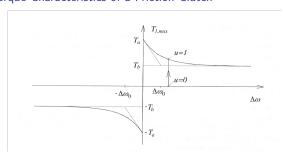

▶ In traction mode

$$T_2 \, \omega_w = e_{gb} \, T_1 \, \omega_e - P_{0,gb}(\omega_e), \qquad T_1 \, \omega_e > 0$$

► In engine braking mode (fuel cut)

$$T_1 \omega_e = e_{gb} T_2 \omega_w - P_{0,gb}(\omega_e),, \qquad T_1 \omega_e < 0$$

Clutch and Torque Converter Efficiency


Friction clutch torque:

$$T_{1,e}(t) = T_{1,gb}(t) = T_1(t) \ \forall t$$

Action and reaction torque in the clutch, no mass.

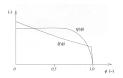
39 / 51

Torque Characteristics of a Friction Clutch

Approximation of the maximum torque in a friction clutch

$$T_{1,max} = \operatorname{sign}(\Delta\omega) \left(T_b - (T_b - T_a) \cdot e^{-|\Delta\omega|/\Delta\omega_0}
ight)$$

Main parameters in a Torque Converter


Input torque at the converter:

$$T_{1,e}(t) = \xi(\phi(t)) \, \rho_h \, d_p^5 \, \omega_e^2(t)$$

Converter output torque

$$T_{1,gb}(t) = \psi(\phi(t)) \cdot T_{1,e}(t)$$

Graph for the speed ratio $\phi(t)=\frac{\omega_{gb}}{\omega_{e}}$, and the experimentally determined $\psi(\phi(t))$

The efficiency in traction mode becomes

$$\eta_{tc} = rac{\omega_{m{gb}} \ T_{1,m{gb}}}{\omega_{m{e}} \ T_{1,m{e}}} = \psi(\phi) \, \phi$$

38 / 51

Outline

Repetition

Energy demand cont

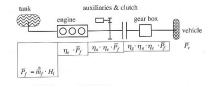
Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables
Engine Efficiency

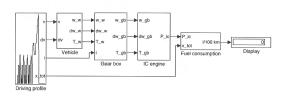
Gear-Box and Clutch Models


Selection of Gear Ratio

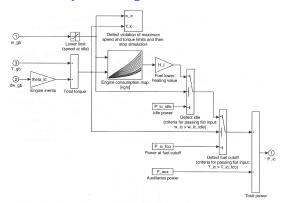
Clutches and Torque Converters

Analysis of IC Powertrains

Average Operating Point Quasistatic Analysis Software tools

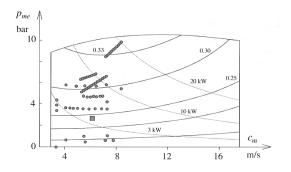

Average Operating Point Method

- Average operating point methodGood agreement for conventional powertrains.
- ► Hand-in assignment.


42/51 43/51

Quasistatic analysis - Layout

- More details and better agreement (depends on model quality)
 Good agreement for general powertrains
- Hand-in assignment.


Quasistatic analysis - IC Engine Structure

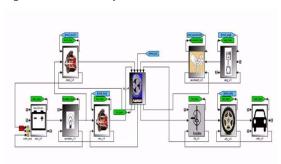
45 / 51

47 / 51

Quasistatic analysis - Engine Operating Points

Software tools

44 / 51


Different tools for studying energy consumption in vehicle propulsion systems

	Quasi static	Dynamic
QSS (ETH)	X	
Advisor, AVL	X	(X)
PSAT		X
CAPSim (VSim)		X
Inhouse tools	(X)	(X)

46 / 51

PSAT

Argonne national laboratory

Advisor

48/51 49/51

Information from AVL:

- ► The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first developed ADVISOR in 1994.
- ▶ Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations, and universities world-wide.
- ► In early 2003 NREL initiated the commercialisation of ADVISOR through a public solicitation.
- ► AVL responded and was awarded the exclusive rights to license and distribute ADVISOR world-wide.