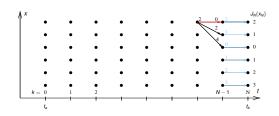
Vehicle Propulsion Systems Lecture 8

Fuel Cell Vehicles

Lars Eriksson Professor

Vehicular Systems Linköping University

December 7, 2015

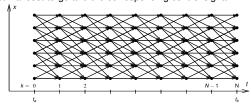

Outline

Repetition

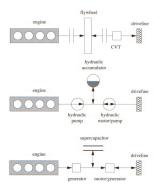
1/40

Deterministic Dynamic Programming - Basic Algorithm

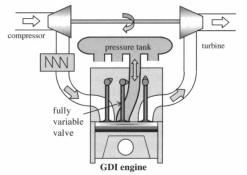
Graphical illustration of the solution procedure



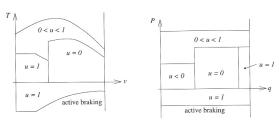
Deterministic Dynamic Programming - Basic algorithm


$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Algorithm idea:


Start at the end and proceed backward in time to evaluate the optimal cost-to-go and the corresponding control signal

Examples of Short Term Storage Systems



Pneumatic Hybrid Engine System

Heuristic Control Approaches

Parallel hybrid vehicle (electric assist)

 Determine control output as function of some selected state variables:

vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration, torque demand

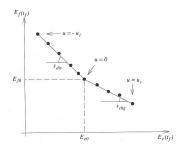
ECMS - Equivalent Consumption Minimization Strategy

ightharpoonup depends on the (soft) constraint

$$\mu_0 = rac{\partial}{q(t_f)}\phi(q(t_f)) = / ext{special case}/ = - extbf{ extit{w}}$$

► Different efficiencies

$$\mu_0 = rac{\partial}{\partial q(t_f)}\phi(q(t_f)) = egin{cases} -w_{dis}, & q(t_f) > q(0) \ -w_{chg}, & q(t_f) < q(0) \end{cases}$$


 Introduce equivalence factor (scaling) by studying battery and fuel power

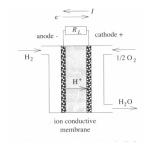
$$s(t) = -\mu(t) \frac{H_{LHV}}{V_b Q_{max}}$$

ECMS - Equivalent Consumption Minimization Strategy

Determining Equivalence Factors II

▶ Collecting battery and fuel energy data from test runs with constant u gives a graph

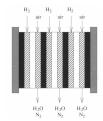
► Slopes determine s_{dis} and s_{chg}

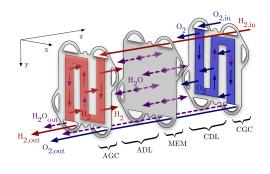

Outline

Fuel Cell Basics

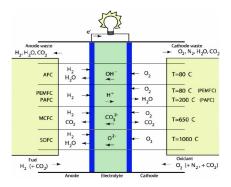
Fuel Cell Basics Fuel Cell Types Reformers **Applications**

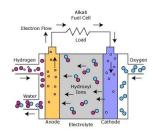
Fuel Cell Basic Principles


- ► Convert fuel directly to electrical energy
- Let an ion pass from an anode to a cathode
- ▶ Take out electrical work from the electrons


Fuel Cell Stack

- The voltage out from one cell is just below 1 V.
- Fuel cells are stacked.




Components in a Fuel Cell Stack

Overview of Different Fuel Cell Technologies

AFC - Alkaline Fuel cell

- ▶ Among the most efficient fuel cells 70%
- Low temperature 65-220°C
 - Quick start, fast dynamics
 - No co-generation
- Sensitive to poisoning

PEMFC - Proton Exchange Membrane Fuel Cell Advantages:

- Relatively high power-density characteristic
- ► Operating temperature, less than 100°C –Allows rapid start-up
- ► Good transient response, i.e. change power
 —Top candidate for automotive applications
- Other advantages relate to the electrolyte being a solid material, compared to a liquid

Disadvantages:

- ▶ of the PEMFC for some applications operating: temperature is low
- ► The electrolyte is required to be saturated with water to operate optimally. -Careful control of the moisture of the anode and cathode streams is important

Hydrogen Fuel Storage

- ► Other fuel cell types are
 - PAFC Phosphoric Acid Fuel Cell
 MCFC Molten Carbonate Fuel Cell
 SOFC Solid Oxide Fuel Cells

175°C 650°C 1000°C

- ▶ Hotter cells, slower, more difficult to control
- ▶ Power generation through co-generation

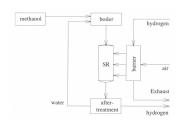
- ▶ Hydrogen storage is problematic Challenging task.
- Some examples of different options.
 - ► Compressed Hydrogen storage
 - ► Liquid phase Cryogenic storage, -253°C
 - Metal hydride
 - Sodium borohydride NaBH₄

18/40

Comparison of H₂ Fuel Cells – US DOE

Fuel Cell Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Disadvantages
Polymer Electrolyte Membrane (PEM)	Perfluoro sulfonic acid	50-100°C 122-212° typically 80°C	< 1kW-100kW	60% transpor- tation 35% stationary	Backup power Portable power Distributed generation Transporation Specialty vehicles	Solid electrolyte re- duces corrosion & electrolyte management problems Low temperature Quick start-up	Expensive catalysts Sensitive to fuel impurities Low temperature waste heat
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10-100 kW	60%	Military Space	Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components	Sensitive to CO ₂ in fuel and air Electrolyte management
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	Distributed generation	Higher temperature enables CHP Increased tolerance to fuel impurities	Pt catalyst Long start up time Low current and power
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/ or potassium carbonates, soaked in a matrix	600-700°C 1112-1292°F	300 kW-3 MW 300 kW module	45-50%	Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP	High temperature cor- rosion and breakdown of cell components Long start up time Low power density
Solid Oxide (SOFC)	Yttria stabi- lized zirconia	700-1000°C 1202-1832°F	1kW-2 MW	60%	Auxiliary power Electric utility Distributed generation	High efficiency Fuel flexibility Can use a veriety of catalysts Solid electrolyte Suitable for CHP & CHHP Hybrid/GT cycle	High temperature cor- rosion and breakdown of cell components High temperature opera- tion requires long start up time and limits

DMFC - Direct Methanol Fuel Cell


- ► Basic operation
 - ► Anode Reaction: $CH_3OH + H_2O \Rightarrow CO_2 + 6H^+ + 6e^-$
 - $\qquad \qquad \textbf{Cathode Reaction: } 3/2\textit{O}_2 + 6\textit{H}^+ + 6\textit{e}^- => 3\textit{H}_2\textit{O}$
 - ► Overall Cell Reaction: CH₃OH + 3/2O₂ => CO₂ + 2H₂O
- ► Main advantage, does not need pure Hydrogen.
- ► Applications outside automotive
 - -battery replacements
- -small light weight
- Low temperature
- ▶ Methanol toxicity is a problem

21/40

Reformers

► Fuel cells need hydrogen — Generate it on-board —Steam reforming of methanol.

$$2\,\textit{CH}_3\textit{OH} + \textit{O}_2 \Rightarrow 2\,\textit{CO}_2 + 4\,\textit{H}_2$$

Fuel Cell Applications in USA – US DOE

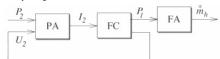
22/40

Outline

Repetition

Fuel Cell Basics

Fuel Cell Basics
Fuel Cell Types
Reformers


Fuel Cell Modeling

Practical aspects

Examples of Components in a Technology Demonstrato

Quasistatic Modeling of a Fuel Cell

► Causality diagram

- ► Power amplifier (Current controller)
- Fuel amplifier (Fuel controller)
- Standard modeling approach

Fuel Cell Thermodynamics

Starting point reaction equation

$$H_2 + \frac{1}{2} O_2 \Rightarrow 2 H_2 0$$

Open system energy – Enthalpy H

$$H = U + pV$$

► Available (reversible) energy – Gibbs free energy G

$$G = H - TS$$

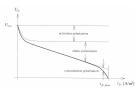
► Open circuit cell voltages

$$U_{rev} = -\frac{\Delta G}{n_e F},$$

$$U_{rev} = \eta_{id} \ U_{id}$$

F – Faradays constant ($F = q N_0$)

► Heat losses under load


Cooling system

$$P_{I} = I_{fc}(t) \left(U_{id} - U_{fc}(t) \right)$$

26/40

Fuel Cell Performance - Polarization curve

Polarization curve of a fuel cell Relating current density $i_{fc}(t)=I_{fc}(t)/A_{fc}$, and cell voltage $U_{fc}(t)$

Curve for one operating condition

- ► Fundamentally different compared to combustion engine/electrical motor
- Excellent part load behaviorWhen considering only the cell

27/4

Single Cell Modeling

► Fuel cell voltage

$$U_{fc}(t) = U_{rev}(t) - U_{act}(t) - U_{ohm}(t) - U_{conc}(t)$$

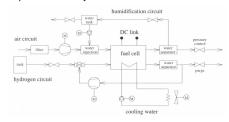
 Activation energy – Get the reactions going Semi-empirical Tafel equation

$$U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$$

▶ Ohmic – Resistance to flow of ions in the cell

$$U_{ohm}(t) = i_{fc}(t) \, \tilde{R}_{fc}$$

 Concentration, change in concentration of the reactants at the electrodes


$$U_{conc}(t) = c_2 \cdot i_{fc}(t)^{c_3}$$
, or $U_{conc}(t) = \dots$

28/40

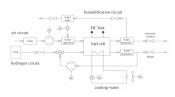
Fuel Cell System Modeling

► A complete fuel cell system

▶ Power at the stack with N cells

$$P_{st}(t) = I_{fc}(t) U_{fc}(t) N$$

29/


Fuel Cell System Modeling

► Describe all subsystems with models

$$P_2(t) = P_{st}(t) - P_{aux}(t)$$

$$P_{aux} = P_0 + P_{em}(t) + P_{ahp}(t) + p_{hp}(t) + P_{cl}(t) + p_{cf}(t)$$

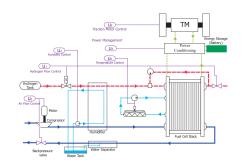
em-electric motor, ahp – humidifier pump, hp – hydrogen recirculation pump, cl – coolant pump, cf – cooling fan.

 Submodels for: Hydrogen circuit, air circuit, water circuit, and coolant circuit Outline

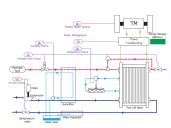
Repetition

Fuel Cell Basics

Fuel Cell Basic Fuel Cell Types Reformers Applications


Fuel Cell Modeling

Practical aspects


Examples of Components in a Technology Demonstrator

31

Fuel Cell Vehicles

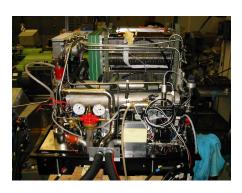
Fuel Cell HEV - Short Term Storage

Short term storage

- 1. Recuperation
- 2. FC has long time constants

Fuel Cell Vehicle

The Hy.Power vehicle, going over a mountain pass in Switzerland in 2002.



- ► Technology demonstrator
- ▶ Lower oxygen contents, 2005 m
- ► Cold weather

34/40

Components - Electric Motor

Components - Fuel Supply and Fuel Cell Stack

36/40

Components – Fuel Cell Stack, Controller and Heat exchanger

Components - Power Electronics and Super Caps

37.40