
A Generalization of the GDE Minimal Hitting-Set Algorithm
to Handle Behavioral Modes

Mattias Nyberg
Department of Electrical Engineering, Linköping University,
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Abstract

A generalization of the minimal hitting-set algo-
rithm given by deKleer and Williams is presented.
The original algorithm handles only one faulty
mode per component and only positive conflicts.
In contrast, the new algorithm presented here han-
dles more than two modes per component and also
non-positive conflicts. The algorithm computes a
logical formula that characterizes all diagnoses. In-
stead of minimal diagnoses, or kernel diagnoses,
some specific conjunctions in the logical formula
are used to characterize the diagnoses. These con-
junctions are a generalization of both minimal and
kernel diagnoses. From the logical formulas, it is
also easy to derive the set of preferred diagnoses.

1 Introduction
Within the field of fault diagnosis, it has often been as-
sumed that each component has only two possible behav-
ioral modes, e.g. see[Reiter, 1987; deKleer and Williams,
1987]. For this case, and given a set of conflict sets, it is
well known that a minimal hitting set corresponds to a min-
imal diagnosis[Reiter, 1987]1. Algorithms for computing
all minimal hitting sets have been presented in[Reiter, 1987;
deKleer and Williams, 1987]. Improvements have later been
given in e.g.[Greineret al., 1989; Wotawa, 2001].

In [Reiter, 1987; deKleer and Williams, 1987] it is assumed
that a conflict can only imply that some component is faulty.
We call this apositive conflict[deKleeret al., 1992]. If all
conflicts are positive, it is also well known that the set of
all minimal diagnoses characterizes all diagnoses[deKleer
and Williams, 1987]. This will for example be the case if
the faulty modes of the components have no fault models.
However, if there are fault models, it is possible to have non-
positive conflicts implying that some component is fault-free.

If there is a desire to compute something that character-
izes all diagnoses when there are non-positive conflicts, the

1Reiter used the word diagnosis for what in this paper is called
minimal diagnosis.

concept of minimal hitting sets and the algorithms in[Reiter,
1987; deKleer and Williams, 1987] can not be used. To solve
this, an alternative characterization based on so calledkernel
diagnoseswas proposed in[deKleeret al., 1992], where also
an algorithm to compute the kernel diagnoses was given. The
kernel diagnoses characterize all diagnoses even in the case
of non-positive conflicts.

It has been noted in several papers that more than two pos-
sible behavioral modes are useful for improving the perfor-
mance of the diagnostic system, see e.g.[Struss and Dressler,
1989; deKleer and Williams, 1989]. For this case, neither
minimal diagnoses or kernel diagnoses can be used to char-
acterize all diagnoses. Further, none of the algorithms in[Re-
iter, 1987; deKleer and Williams, 1987; deKleeret al., 1992]
are applicable.

To be able to handle both more than two behavioral modes
and non-positive conflicts, the present paper proposes a new
characterization of all diagnoses. Conflicts and diagnosesare
represented by logical formulas, and instead of minimal di-
agnoses and kernel diagnoses, we use more general conjunc-
tions on a specific form. In the special case of two behavioral
modes per component, these conjunctions become equivalent
to kernel diagnoses, and in the case of only positive conflicts,
they become equivalent to minimal diagnoses. Thus, the here
proposed framework can be seen as a generalization of both
minimal diagnoses and kernel diagnoses.

Another contribution is that we show that the minimal hit-
ting set algorithm given in[deKleer and Williams, 1987] can
in fact be generalized to compute the here proposed char-
acterization. Note that, even though the papers[Struss and
Dressler, 1989; deKleer and Williams, 1989] consider more
than two behavioral modes per component, they are, in con-
trast to the present paper, not concerned with the characteri-
zation or computation of all diagnoses.

Under the assumption of only two behavioral modes per
component, the minimal diagnoses can be argued to be the
most desired diagnoses. This has been called the parsimony
principle, e.g. see[Reiter, 1987]. In the generalized case of
more than two behavioral modes, the minimal diagnoses are
no longer necessarily the most desired diagnoses. Instead the
concept ofpreferred diagnoseshas been defined in[Dressler
and Struss, 1992]. We will in this paper show how to obtain
these preferred diagnoses by means of the above mentioned
logical formulas.



The paper is organized as follows. In Section 2, the al-
gorithm from[deKleer and Williams, 1987] is restated as a
reference. In Section 3, the logical framework is presented.
Then the generalized version of the algorithm from[deKleer
and Williams, 1987] is given in Section 4. Sections 5 and 6
discuss the relation to minimal and kernel diagnoses. Finally,
Section 7 describes how to compute the preferred diagnoses.
All proofs of theorems have been placed in an appendix.

2 The Original Algorithm
This section presents the original algorithm and its associated
framework as presented in[deKleer and Williams, 1987].
However, since we have a different objective than in the orig-
inal paper, we will not always use the same notation and nam-
ing convention.

The system to be diagnosed is assumed to consist of a num-
ber of components represented by a setC. A conflict is rep-
resented as a setC ⊆ C. The meaning of a conflictC is that
not all components inC can be in the normal fault-free mode.
Thus only positive conflicts can be handled. A conflictC1 is
said to beminimal if there is no other conflictC2 such that
C2 ⊂ C1.

A diagnosisδ is also represented as a setδ ⊆ C. The
meaning of a diagnosisδ is that the components contained in
δ are faulty and the components not contained inδ are fault
free. A diagnosisδ1 is said to beminimal if there is no other
diagnosisδ2 such thatδ2 ⊂ δ1.

One fundamental relation between conflicts and diagnoses
is that if C is the set of all minimal conflicts,δ is a diagnosis
if and only if for all conflictsC ∈ C it holds thatδ ∩ C 6= ∅.

Given a set of diagnoses∆ and a conflictC the minimal
hitting set algorithm in[deKleer and Williams, 1987] finds an
updated set of minimal diagnoses. A version of the algorithm,
as described in the text of[deKleer and Williams, 1987], can
be written as follows.

Algorithm 1
Input: a set of minimal diagnoses∆, and a conflict setC
Output: the updated set of minimal diagnosesΘ
∆old = ∆
forall δi ∈ ∆ do

if δi ∩ C = ∅ then
Removeδi from∆old

forall c ∈ C do
δnew := δi ∪ {c}
forall δk ∈ ∆, δk 6= δi do

if δk ⊆ δnew then goto LABEL1
end
∆add := ∆add ∪ {δnew}
LABEL1

end
end

end
Θ := ∆old ∪ ∆add

The algorithm has the properties that if∆ is the set of all
minimal diagnoses, the algorithm outputΘ will contain all
minimal diagnoses with respect to also the new conflictC.
Further, it also holds thatΘ will contain only minimal diag-
noses. Note that this algorithm does not require the conflict

C to be minimal, contrary to what has been stated in[Greiner
et al., 1989]. It can also be noted that the loop overδk ∈ ∆
could be modified toδk ∈ ∆old, which would be more effi-
cient since∆old is smaller than∆.

3 A Logical Framework
Each component is assumed to be in exactly one out of sev-
eral behavioral modes. A behavioral mode can be for example
no-fault, abbreviatedNF , gain-faultG, biasB, open circuit
OC, short circuitSC, unknown faultUF , or just faultyF .
For our purposes, each component is abstracted to a variable
specifying the behavioral mode of that component. LetC de-
note the set of such variables. For each component variablec
let Rc denote thedomainof possible behavioral modes, i.e.
c ∈ Rc.

We will now define a set of formulas to be used to express
that certain components are in certain behavioral modes. If
c is a component variable in the setC andM ⊆ Rc, the ex-
pressionc ∈ M is a formula. For example, ifp is a pressure
sensor, the formulap ∈ {NF, G, UF} means that the pres-
sure sensor is in modeNF , G, or UF . If M is a singleton,
e.g. M = {NF}, we will sometimes write alsop = NF .
Further, the constant⊥ with value false, is a formula. Ifφ
andγ are formulas thenφ ∧ γ, φ ∨ γ, and¬φ are formulas.

In accordance with the theory of first order logic we say
that a formulaφ is a semantic consequence of another formula
γ, and writeγ |= φ, if all assignments of the variablesC that
makeγ true also makeφ true. This can be generalized to sets
of formulas, i.e.{γ1, . . . , γn} |= {φ1, . . . , φm} if and only if
γ1 ∧ · · · ∧ γn |= φ1 ∧ · · · ∧ φm. If it holds thatΓ |= Φ and
Φ |= Γ, whereΦ andΓ are formulas or sets of formulas,Φ
andΓ are said to be equivalent and we writeΓ ≃ Φ.

We will devote special interest to conjunctions on the form

c1 ∈ M1 ∧ c2 ∈ M2 ∧ · · · ∧ cn ∈ Mn (1)

where all components are unique, i.e.ci 6≡ cj if j 6= k, and
eachMi is a nonempty proper subset ofRci

, i.e. ∅ 6= Mi ⊂
Rci

. LetDi denote a conjunction on the form (1). From a set
of such conjunctions we can then form a disjunction

D1 ∨ D2 ∨ . . .Dm (2)

Note that the different conjunctionsDi can contain different
number of components. We will say that a formula is inmax-
imal normal formMNF if it is on the form (2) and has the
additional property that no conjunction is a consequence of
another conjunction, i.e. for each conjunctionDi, there is no
conjunctionDj , j 6= i, for which it holds thatDj |= Di.
Note that the purpose of using formulas in MNF is that they
are relatively compact in the sense that an MNF-formula does
not contain redundant conjunctions and that each conjunction
does not contain redundant assignments.

For an example consider the following two formulas con-
taining pressure sensorsp1, p2, andp3, where all have the
behavioral modesRpi

= {NF, G, B, UF}.

p1 ∈ {UF} ∧ p2 ∈ {B, UF} ∨ p3 ∈ {UF}

p1 ∈ {UF} ∧ p2 ∈ {B, UF} ∨ p1 ∈ {G, UF}

The first formula is in MNF but not the second sincep1 ∈
{UF} ∧ p2 ∈ {B, UF} |= p1 ∈ {G, UF}.



3.1 Conflicts and Diagnoses
A conflict is assumed to be written using the logical language
defined above. For example, if has been found that the pres-
sure sensorp1 can not be in the modeNF at the same time
asp2 is in the modeB or NF , this gives the conflict

H = p1 ∈ {NF} ∧ p2 ∈ {B, NF} (3)

To relate this definition of conflict to the one used in Sec-
tion 2, consider the conflictC = {a, b, c}. With the logical
language, we can write this conflict asa ∈ {NF} ∧ b ∈
{NF} ∧ c ∈ {NF}.

Instead of conflicts, we will mostly use negated conflicts,
so instead ofH we consider¬H . In particular we will
use negated conflicts written in MNF. For an example, the
negated conflict¬H , whereH is defined as in (3), can be
written in MNF asp1 ∈ {G, B, UF}∨p2 ∈ {G, UF}. With-
out loss of generality, we will from now on assume that all
negated conflicts are written on the form

c1 ∈ M1 ∨ c2 ∈ M2 ∨ · · · ∨ cn ∈ Mn (4)

wherecj 6≡ ck if j 6= k, and∅ 6= Mi ⊂ Rci
. This means

that (4) is in MNF.
A system behavioral modeis a conjunction containing a

unique assignment of all components inC. For example if
C = {p1, p2, p3}, a system behavioral mode could be

p1 = UF ∧ p2 = B ∧ p3 = NF

We consider the termdiagnosisto refer to a system behavioral
mode consistent with all negated conflicts. More formally, if
P is the set of all negated conflicts, a system behavioral mode
d is adiagnosisif {d} ∪ P 6|= ⊥ or equivalentlyd |= P.

To relate this definition of diagnosis to the one used in Sec-
tion 2, assume thatC = {a, b, c, d} and consider the diagnosis
δ = {a, b}. With the logical language, we can write this di-
agnosis asa = F ∧ b = F ∧ c = NF ∧ d = NF .

4 The Generalized Algorithm
With only small modifications, the original algorithm stated
in Section 2 can be made to work with logical MNF-formulas
instead of sets. The result is an algorithm that handles more
than two behavioral modes per component and also non-
positive conflicts. With the modification, the algorithm will
take as inputs, a formulaD and a negated conflictP , both
written in MNF. The purpose of the algorithm is then to de-
rive a new formulaQ in MNF such thatQ ≃ D ∧ P .

The modifications are the following:

• Instead of using a set of minimal diagnoses∆ as input,
use a formulaD in MNF. Note thatD is not restricted to
be a disjunction of system behavioral modes, but instead
can be a disjunction of conjunctions on the form (1).

• Instead of using a conflict setC as input, use a negated
conflictP on the form (4).

• Instead of checking the conditionδi ∩ C = ∅, check the
conditionDi 6|= P .

• Instead of the assignmentδnew := δi ∪ {c}, find a con-
junctionDnew in MNF such thatDnew ≃ Di ∧ Pj .

• Instead of checking the conditionδk ⊆ δnew, check the
conditionDnew |= Dk.

In the algorithm we will use the notationDi ∈ D to denote
the fact thatDi is a conjunction inD. The algorithm can now
be stated as follows:

Algorithm 2
Input: a formulaD in MNF, and a negated conflictP
Output:Q
Dold = D
forall Di ∈ D do

if Di 6|= P then
RemoveDi fromDold

forall Pj ∈ P do
LetDnew be a conjunction in MNF such

thatDnew ≃ Di ∧ Pj

forall Dk ∈ D, Dk 6= Di do
if Dnew |= Dk then goto LABEL1

end
Dadd := Dadd ∨ Dnew

LABEL1
end

end
end
Q := Dold ∨ Dadd

To keep the algorithm description “clean”, some operations
have been written in a simplified form. More details are dis-
cussed in Section 4.2 below. Note that an improvement cor-
responding to the change of∆ to ∆old in Algorithm 1 is not
possible for the generalized algorithm.

The algorithm is assumed to be used in an iterative manner
as follows. First when only one conflictP1 is considered, the
diagnoses are already described byP1. Thus, the algorithm
is not needed. When a second conflictP2 is considered, the
algorithm is fed withD = P1 andP = P2, and produces the
outputQ such thatQ ≃ P1 ∧ P2. Then, for each additional
conflict Pn that is considered, the inputD is the old output
Q.

When the algorithm is used in this way, the following re-
sults can be guaranteed.

Theorem 1 Let P be a set of negated conflicts that is not in-
consistent, i.e.P 6|= ⊥, and letQ be the output from Algo-
rithm 2 after processing all negated conflicts inP. Then it
holds thatQ ≃ P.

Theorem 2 The outputQ from Algorithm 2 is in MNF.

The proofs for these results can be found in the appendix.

4.1 Example
To illustrate the algorithm, consider the following small ex-
ample whereC = {p1, p2, p3} and the domain of behavioral
modes for each component isRpi

= {NF, G, B, UF}:

D =D1 ∨ D2 = p1 ∈ {G, B, UF} ∨ p3 ∈ {G, UF}

P =P1 ∨ P2 = p2 ∈ {B, UF} ∨ p3 ∈ {G, B, UF}

First the conditionD1 6|= P is fulfilled which means thatD1

is removed fromDold and the inner loop of the algorithm is
entered. There aDnew is created such thatDnew ≃ D1 ∧



P1 = p1 ∈ {G, B, UF} ∧ p2 ∈ {B, UF}. This Dnew is
then compared toD2 in the conditionDnew |= D2. The
condition is not fulfilled which means thatDnew is added to
Dadd. Next aDnew is created such thatDnew ≃ D1 ∧ P2 =
p1 ∈ {G, B, UF} ∧ p3 ∈ {G, B, UF}. Also this time the
conditionDnew |= D2 is not fulfilled, implying thatDnew

is added toDadd. Next, the conjunctionD2 is investigated
but sinceD2 |= P holds,D2 is not removed fromDold and
the inner loop is not entered. The algorithm output is finally
formed as

Q := Dold ∨Dadd = D2 ∨ (D1 ∧ P1 ∨ D1 ∧ P2) =

=p3 ∈{G, UF} ∨ p1 ∈{G, B, UF} ∧ p2 ∈{B, UF}∨

∨ p1 ∈{G, B, UF} ∧ p3 ∈{G, B, UF}

It can be verified thatQ ≃ D ∧ P . Also, it can be seen that
Q is in MNF.

4.2 Algorithm Details
To implement the algorithm, some more details need to be
known. The first is how to check the conditionDi |= P . To
illustrate this, consider an example whereDi contains com-
ponentsc1, c2, andc3 andP componentsc2, c3, andc4. Since
D is in MNF, andP in the form (4),Di andP will have the
form

Di =c1 ∈ MD
1 ∧ c2 ∈ MD

2 ∧ c3 ∈ MD
2 (5)

P =c2 ∈ MP
2 ∨ c3 ∈ MP

3 ∨ c4 ∈ MP
4 (6)

We realize that the conditionDi |= P holds if and only if
MD

2 ⊆ MP
2 or MD

3 ⊆ MP
3 . Thus, this example shows that

in general,Di |= P holds if and only ifDi andP contain at
least one common componentci whereMD

i ⊆ MP
i .

The second detail is how to find an expressionQnew in
MNF such thatQnew ≃ Di ∧ Pj . To illustrate this, consider
an example whereDi contains componentsc1 andc2, andPj

the componentc2. SinceD is in MNF, andP in the form (4),
Di andPj will have the form

Di =c1 ∈ MD
1 ∧ c2 ∈ MD

2 (7a)

Pj =c2 ∈ MP
2 (7b)

ThenQnew will be formed asDnew = c1 ∈ MD
1 ∧ c2 ∈

MD
2 ∩ MP

2 which means thatDnew ≃ Di ∧ Pj . If it holds
that MD

2 ∩ MP
2 6= ∅, Dnew will be in MNF. Otherwise let

Dnew = ⊥. The checkDnew |= Dk will then immediately
make the algorithm jump toLABEL1meaning thatDnew will
not be added toDadd.

The third detail is how to check the conditionDnew |= Dk.
To illustrate this, consider an example whereDnew contains
componentsc1 and c2, andDk the componentsc2 and c3.
SinceDnew andD are both in MNF,Dnew andDk will have
the form

Dnew =c1 ∈ Mn
1 ∧ c2 ∈ Mn

2 (8a)

Dk =c2 ∈ MD
2 ∧ c3 ∈ MD

3 (8b)

Without changing their meanings, these expressions can be
expanded so that they contain the same set of components:

D′
new =c1 ∈ Mn

1 ∧ c2 ∈ Mn
2 ∧ c3 ∈ Rc3

(9)

D′
k =c1 ∈ Rc1

∧ c2 ∈ MD
2 ∧ c3 ∈ MD

3 (10)

Now we see that the conditionDnew |= Dk holds if and only
if Mn

1 ⊆ Rc1
, Mn

2 ⊆ MD
2 , andRc3

⊆ MD
3 . The first

of these three conditions is always fulfilled and the third can
never be fulfilled since, by definition of MNF,MD

3 ⊂ Rc3
.

Thus, this example shows thatDnew |= Dk holds if and only
if (1), Dk contains only components that are also contained in
Dnew, and (2), for all componentsci contained in bothDnew

andDk it holds thatMn
i ⊆ MD

i .
The fourth detail to be considered is the expression

Dadd := Dadd ∨ Dnew. SinceDadd is not assigned from
the beginning, this expression is to be read asDadd := Dnew

whenDadd is unassigned.
Finally, note thatDold or Dadd may be unassigned or

empty at some places in the algorithm. In that case, e.g. in
Q := Dold ∨ Dadd, the missing term can just be neglected.

5 Relation to Minimal Diagnoses
The concept of minimal diagnoses was originally proposed
in [Reiter, 1987; deKleer and Williams, 1987] for systems
where each component has only two possible behavioral
modes, i.e. the normal fault-free mode and a faulty mode.
Minimal diagnoses have two attractive properties. Firstly,
they represent the “simplest” diagnoses and are therefore of-
ten desired when prioritizing among diagnoses. Secondly, in
case there are only positive conflicts, the minimal diagnoses
characterize the set of all diagnoses. These two properties
will now be investigated for the generalized case of more than
two modes per component and non-positive conflicts.

5.1 “Simplest” Property
For the case of more than two modes per component, the
concept ofpreferred diagnoseswas defined in[Dressler and
Struss, 1992] as a generalization of minimal diagnoses. The
basic idea is that the behavioral modes for each component
are ordered in a partial order defining that some behavioral
modes are more preferred than other. For example,NF is
usually preferred over any other mode, and a simple electri-
cal fault, such as short-cut or open circuit, may be preferred
over other more complex behavioral modes. Further, an un-
known faultUF may be the least preferred mode.

For a formal definition letb1
c ≥c b2

c denote the fact that
for componentc, the behavioral modeb1

c is equally or more
preferred thanb2

c. For each component, this relation forms a
partial order on the behavioral modes. Further, these relations
induce a partial order on the system behavioral modes. Letd1

andd2 be two system behavioral modesdi = ∧c∈C(c = bi
c).

Then we writed1 ≥ d2 if for all c ∈ C it holds thatb1
c ≥c b2

c.
A preferred diagnosis can then formally be defined as a diag-
nosisd such that there is no other diagnosisd′ whered′ > d.
In Section 7 we will discuss how the preferred diagnoses can
be obtained from an MNF formula representing all diagnoses.
Note that in the case of only two modes, preferred diagnoses
are exactly the minimal diagnoses.

Remark: One may ask what “preferred” or “simplest” di-
agnoses means. One possible formal justification is the fol-
lowing. Let P (d) denote the prior probability of the system
behavioral moded = ∧c∈Cc = bc. We assume that faults
occur independently of each other which means thatP (d) =



∏
c∈C

P (c = bc) whereP (c = bc) is the prior probability
that componentc is in behavioral modebc. If Q is a formula
such thatQ ≃ P, it holds thatP (d|P) = P (d ∧ Q)/P (Q).
This means thatP (d|P) = P (d)/P (Q) if d |= P, i.e. if d is a
diagnosis, andP (d|P) = 0 if d 6|= P, i.e. if d is not a diagno-
sis. For a given setP, the termP (Q) is only a normalization
constant, which means that to compareP (d|P) for different
diagnoses it is enough to consider the priorsP (d). To know
the exact value of a priorP (c = bc) may be very difficult
or even impossible. Therefore one may assume that for each
component, the priors are unknown but at least partially or-
dered. Under this assumption, and given the set of negated
conflicts, the preferred diagnoses are then the most probable
ones.

5.2 Characterizing Property
Now we investigate how the characterizing property of mini-
mal diagnoses can be generalized to the case of more than two
modes and the presence of non-positive conflicts. In some
special cases, the preferred diagnoses characterize all diag-
noses with the help of the partial order≥. That is, ifd1 is a
diagnosis and ifd2 < d1, we know that alsod2 is a diagnosis.
This is always true when there are only two modes per com-
ponent and only positive conflicts, which in turn is guaranteed
when there are no fault models. Note that it may also be true
in a case with more than two modes, even in the presence of
fault models. However this does not hold generally.

In an MNF-formula, the conjunctions have the property
that they characterize all diagnoses. For example consider
the case when the components are={a, b, c, d, e}, R =
{NF, B, G, UF} for all components, anda ∈ {B, UF}∧b ∈
{G, UF} is one of the conjunctions in an MNF formula. By
letting each diagnosis be represented as an ordered set cor-
responding to〈a, b, c, d, e〉, this single conjunction character-
izes the diagnoses

{B, UF} × {G, UF} × {NF, B, G, UF}×

× {NF, B, G, UF} × {NF, B, G, UF}

which is 256 diagnoses.
For another example assume that each of the components

C = {a, b, c, d} has only two modes, i.e.R = {NF, F}.
A conjunctiona ∈ {F} ∧ b ∈ {F} would then characterize
all diagnoses{F} × {F} × {NF, F} × {NF, F}. In Sec-
tion 2 this conjunction would be represented by{a, b}. If all
conflicts are positive, all conjunctions would be on this form,
and there is a one-to-one correspondence between the con-
junctions in an MNF-formula and the minimal diagnoses in
the original framework described in Section 2.

If there is a fault model for the modeF of a component
a, the non-positive conflicta ∈ {F} may appear. Assume
also that a conflictb = {NF} appears. This has the conse-
quence that a formula in MNF, describing all diagnoses, may
for example contain a conjunctiona ∈ {NF} ∧ b ∈ {F}.
This conjunction characterizes all diagnoses{NF}×{F}×
{NF, F}×{NF, F}, and this is a so calledkernel diagnosis
(see the next section). Note that to represent this conjunction
is not possible using sets as described in Section 2. Note also
that there is one minimal diagnosis in this example, namely

a = NF ∧ b = F ∧ c = NF ∧ d = NF , and this minimal
diagnosis does not characterize all diagnoses.

6 Relation to Kernel Diagnoses
The paper[deKleeret al., 1992] definespartial diagnosisand
kernel diagnosis. This was done assuming only two modes
per component. The purpose of kernel diagnoses is that the
set of all kernel diagnoses characterizes all diagnoses even
in the case when there are non-positive conflicts. As noted
in [deKleeret al., 1992], also a subset of kernel diagnoses is
sometimes sufficient to characterize all diagnoses.

In the context of this paper we can define partial diagnosis
as a conjunctiond of mode assignments such thatd |= P.
Then, a kernel diagnosis is partial diagnosisd such that there
is no other partial diagnosisd′ whered |= d′.

According to the following theorem, the outputQ from
Algorithm 2 is, in the two-mode case, a disjunction of kernel
diagnoses.

Theorem 3 Let each component have only two possible be-
havioral modes, letP be a set of negated conflicts, and letQ
be the output from Algorithm 2 after processing all negated
conflicts inP. Then it holds that each conjunction ofQ is a
kernel diagnosis.

Note that the MNF property alone does not guarantee that all
conjunctions are kernel diagnoses. This can be seen in the
following formula which is in MNF.

c1 = N ∧ c2 = N ∨ c1 = N ∧ c2 = F (11)

All diagnoses represented by (11) are characterized by the
single kernel diagnosisc1 = N . Therefore none of the con-
junctions in (11) are kernel diagnoses.

Even though the paper[deKleeret al., 1992] defines par-
tial and kernel diagnoses for the case of only two modes
per component, the definition of partial and kernel diagnoses
given above is applicable also to the case of more than two
modes per component. However, the conjunctions in the
outputQ from Algorithm 2 will for this case not be ker-
nel diagnoses. Instead each conjunction represents a set of
partial diagnoses, e.g. the first conjunction of (12) repre-
sents the two partial diagnosesc1 = E ∧ c3 = B and
c1 = E ∧ c3 = G. Since the second conjunction of (12)
represents e.g.c1 = E ∧ c2 = E ∧ c3 = B, it is also obvious
that the partial diagnoses represented by each conjunctionare
not necessarily kernel diagnoses.

7 Extracting Preferred Diagnoses
In Section 5 it was concluded that the conjunctions in the out-
put Q from Algorithm 2 characterize all diagnoses, and in
the special case of two modes per component and only pos-
itive conflicts, there is a one-to-one correspondence between
MNF-conjunctions and the minimal diagnoses. This special
case has also the property that if we study each conjunction
in an MNF formulaQ separately, it will have only one pre-
ferred diagnosis. This preferred diagnosis is a also a preferred
diagnosis when considering the whole formulaQ. The con-
sequence is that it is straightforward to extract the preferred
diagnosis from a formulaQ. In the general case, there is no



such guarantee. For example, in the two-mode case and when
some conflicts are non-positive, which means that the negated
conflict will contain some assignmentc = NF , there may be
a conjunction not corresponding to a preferred diagnosis.

For an example with more than two modes, consider
two componentsc1 and c2 whereRci

= {NF, E, F} and
NF >ci

E >ci
F , and a third componentc3 where

Rci
= {NF, B, G} with the only relationsNF >c3

B and
NF >c3

G. Then consider the MNF-formula

Q = c1 ∈ {E} ∧ c3 ∈ {B, G}∨

c1 ∈ {E, F} ∧ c2 ∈ {E, F} ∧ c3 ∈ {B, G} (12)

The preferred diagnoses consistent with the first conjunction
arec1 = E ∧ c2 = NF ∧ c3 = B andc1 = E ∧ c2 = NF ∧
c3 = G. The preferred diagnoses consistent with the second
arec1 = E∧c2 = E∧c3 = B andc1 = E∧c2 = E∧c3 = G.
As seen, the two diagnosesc1 = E ∧ c2 = E ∧ c3 = B and
c1 = E ∧ c2 = E ∧ c3 = G are not preferred diagnoses of
the whole formulaQ.

The example shows that preferred diagnoses can not be ex-
tracted simply by considering one conjunction at a time. In-
stead the following procedure can be used. For each conjunc-
tion in Q, find the preferred diagnoses consistent with that
conjunction, and collect all diagnoses found in a setΨ. The
setΨ may contain non-preferred diagnoses. These can be re-
moved by a simple pairwise comparison. Note that the setΨ
need not to be calculated for every new negated conflict that
is processed. Instead only at the time the preferred diagnoses
are really needed, for example before a service task is to be
carried out, the setΨ needs to be calculated.

One may ask how much extra time that is needed for the
computation of the preferred diagnoses, compared to the time
needed to process all negated conflicts and computeQ. To
give an indication of this, the following empirical experiment
was set up. A number of 132 test cases were randomly gen-
erated. The test cases represent systems with between 4 and
7 components, where each component has 4 possible behav-
ioral modes. The number of negated conflicts varies between
2 and 12.
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Figure 1: The total execution times for computingQ (dashed
line) and preferred diagnoses (solid line).

In Figure 1, the results for the 132 test cases are shown.
The reference time on the x-axis is chosen to be the computa-
tion time needed to computeQ. As seen, the figure indicates
that the extra time needed to compute preferred diagnoses
from the MNF formulaQ, is almost negligible compared to
the time needed to compute only the MNF formula.

8 Conclusions
In this paper the minimal hitting-set algorithm from[deK-
leer and Williams, 1987] has been generalized to handle more
than two modes per component and also non-positive con-
flicts. This has been done by first establishing a framework
where all conflicts and diagnoses are represented with spe-
cial logical formulas. Then the original minimal hitting-set
algorithm needed only small modifications to obtain the de-
sired results. It has been formally proven thatQ ≃ P, i.e.
the algorithm output is equivalent to the set of all diagnoses.
Further it was proven that the algorithm outputQ is in the
MNF-form that guarantees thatQ does not contain redundant
conjunctions.

In a comparison with the original framework where con-
flicts and diagnoses are represented by sets, it was concluded
that the conjunctions in the outputQ, from the generalized
algorithm, are a true generalization of the minimal diagnoses
obtained from the minimal hitting-set algorithm. It has also
been concluded that the conjunctions are a true generaliza-
tion of kernel diagnoses. Since, for the case of more than
two mode per component, minimal diagnoses do not neces-
sarily correspond to the most desired diagnoses, it was instead
shown how preferred diagnoses could be obtained from the
conjunctions with a reasonable amount of effort.
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Appendix
Lemma 1 The outputQ from Algorithm 2 contains no two
conjunctions such thatQ2 |= Q1.

PROOF. Assume the contrary, thatQ1 andQ2 are two con-
junctions inQ and Q2 |= Q1. There are three cases that
need to be investigated: (1)Q1 ∈ Dold, Q2 ∈ Dadd, (2)
Q2 ∈ Dold, Q1 ∈ Dadd, (3) Q1 ∈ Dadd, Q2 ∈ Dadd.

1) The factQ2 ∈ Dadd means thatDnew = Q2 at some
point. SinceQ1 ∈ Dold, Dnew must then have been
compared toQ1. SinceQ2 has really been added, it can-
not have been the case thatQ2 |= Q1.

2) SinceQ1 ∈ Dadd, it holds thatQ1 = Di ∧ Pj for some
Di ∈ D. The factQ2 |= Q1 implies thatQ2 |= Di ∧
Pj |= Di. This is a contradiction sinceQ2 ∈ D, andD
is in MNF.

3) There are three cases: (a)Q2 = Di ∧ Pj2 |= Di ∧
Pj1 = Q1, (b) Q2 = Di2 ∧ Pj |= Di1 ∧ Pj = Q1, (c)
Q2 = Di2 ∧Pj2 |= Di1 ∧Pj1 = Q1, where in all cases,
Pj1 6= Pj2 andDi1 6= Di2.

a) We know thatDi andP are formulas on forms like
Di = a ∈ A ∧ b ∈ B ∧ c ∈ C andP = a ∈
Ap ∨ b ∈ Bp respectively. This means thatQ1 =
a ∈ A∩Ap∧b ∈ B∧c ∈ C andQ2 = a ∈ A∧b ∈
B ∩ Bp ∧ c ∈ C. The factQ2 |= Q1 implies that
A ⊆ A ∩ Ap which further means thatA ⊆ Ap.
This impliesDi = a ∈ A ∧ b ∈ B ∧ c ∈ C |= a ∈
Ap |= P . Thus,Q1 andQ2 are never subject to be
added toDadd.

b) We have thatQ2 = Di2∧Pj |= Di1∧Pj |= Di1 ∈
D. This means thatQ2 = Di2 ∧ Pj can not have
been added toDadd.

c) We have thatQ2 = Di2 ∧ Pj2 |= Di1 ∧ Pj1 |=
Di1 ∈ D. This means thatQ2 = Di2 ∧Pj2 can not
have been added toDadd.

All these investigations show that it impossible thatQ2 |=
Q1. �

Theorem 2 The outputQ from Algorithm 2 is in MNF.

PROOF. From Lemma 1 it follows thatQ contains no two
conjunctions such thatQ2 |= Q1. All conjunctions inDold

are trivially on the form specified by (1). All conjunctions in
Dadd are also on the form (1) because of the requirement on
Dnew. ThusQ is in MNF. �

Lemma 2 Let Q be the output from Algorithm 2 after pro-
cessing all negated conflicts inP. For any two conjunctions
Q1 andQ2 in Q, there is no componentc and conjunctionD̄
such thatQ1 ≃ D̄ ∧ c ∈ A1 andQ2 ≃ D̄ ∧ c ∈ A2 where
A1 ⊆ Rc andA2 ⊆ Rc.

PROOF. Assume that there is a componentc and conjunction
D̄ such thatQ1 ≃ D̄ ∧ c ∈ A1 andQ2 ≃ D̄ ∧ c ∈ A2. We
can writeQ1 asc ∈ Aφ1 ∧ D̄1 whereAφ1 is the intersection
of the setsMj obtained from allP ∈ φ1 ⊆ P, andD̄1 is
the conjunction of onePj obtained from everyP ∈ P \ φ1.
Similarly we writeQ2 asc ∈ Aφ2 ∧ D̄2.

We can find aD′ such thatD′ ≃ D̄1 ≃ D̄2 and where
D′ is the conjunction of onePj obtained from everyP ∈
P \ (φ1 ∩φ1). Then letD∗ = c ∈ Aφ1∩φ2 ∧D′ which means
thatQ1 |= c ∈ Aφ1∩φ2 ∧ D̄1 ≃ D∗. Similarly we can obtain
the relationQ2 |= c ∈ Aφ1∩φ2 ∧ D̄2 ≃ D∗. By construction
of D∗ it can be realized thatD∗ |= Qk for some conjunction
Qk in Q. Because of this relation bothQ1 andQ2 can not
be contained inQ which is a contradiction. This means that
there can not be a componentc and conjunctionD̄ such that
Q1 ≃ D̄ ∧ c ∈ A1 andQ2 ≃ D̄ ∧ c ∈ A2. �

Lemma 3 Let Q = Dold ∧ Dadd be the output from Algo-
rithm 2 after processing all test negated conflicts inP. If Dim

is not contained inDold, and the setDim
∧Pj is not contained

in Dadd, after running the algorithm, then there is aDim+1

such thatDim
∧ Pj |= Dim+1

andDim+1
∧ Pj 6|= Dim

∧ Pj .

PROOF. The fact thatDim
is not contained inDold means

that the inner loop of the algorithm must have been entered
whenDi = Dim

. Then the fact thatDim
∧Pj is not contained

in Dadd, means thatDim
∧ Pj |= Dk for someDk, k 6= im.

By choosingim+1 = k, this givesDim
∧ Pj |= Dim+1

.
Next we prove thatDk ∧ Pj 6|= Di ∧ Pj . Let the sin-

gle assignment inPj be a ∈ Ap. We will divide the proof
into four cases: (1)a 6∈ comps Di, a 6∈ comps Dk, (2)
a ∈ comps Di, a 6∈ comps Dk, (3) a 6∈ comps Di,
a ∈ comps Dk, and (4)a ∈ comps Di, a ∈ comps Dk.

1) The factDi ∧ Pj |= Dk would imply Di |= Dk which
is impossible becauseD is in MNF.

2) This means thatDi can be written asDi = D′∧a ∈ Ai.
The factDi∧Pj |= Dk would then imply thatD′ |= Dk

and consequently thatDi |= Dk, which is impossible
becauseD is in MNF.

3) First assume thatDi contains a componentc 6∈ Dk.
Note that this component is not componenta. This
would imply thatc is not contained inPj . Thus the com-
ponents ofDi ∧ Pj is a not a subset of the components
of Dk ∧ Pj , which impliesDk ∧ Pj 6|= Di ∧ Pj . The
case left to investigate is when the components ofDi are
a subset of the components ofDk.
Assume thatDk ∧ Pj |= Di ∧ Pj . This relation can be
written D′

k ∧ a ∈ Ap ∩ Ak |= Di ∧ a ∈ Ap whereD′
k

is a conjunction not containing componenta. For this
relation to hold it must hold thatD′

k |= Di. This means
that Dk = a ∈ Ak ∧ D′

k |= Di which is impossible
becauseD is in MNF.

4) Assume thatDk ∧ Pj |= Di ∧ Pj . This relation can be
writtenD′

k ∧ a ∈ Ap ∩ Ak |= D′
i ∧ a ∈ Ap ∩ Ai where

D′
k andD′

i are conjunctions not containing component
a. This relation would implyD′

k |= D′
i. Further on, the

factDi ∧ Pj |= Dk can be writtena ∈ Ap ∩Ai ∧D′
i |=

a ∈ Ak ∧ D′
k, which implies thatD′

i |= D′
k. Thus we

haveD′
i ≃ D′

k and the only possible difference between
Di andDk is the assignment of componenta. Lemma 2
says this is impossible.

With i = im andk = im+1, these four cases have shown that
Dim+1

∧ Pj 6|= Dim
∧ Pj . �



Lemma 4 Let D be the output from Algorithm 2 after pro-
cessing all negated conflicts inPn−1, andQ the output given
D andP as inputs. For each conjunctionDi in D and Pj

in P it holds that there is a conjunctionQk in Q such that
Di ∧ Pj |= Qk.

PROOF. If, after running the algorithm,Di is contained in
Dold, then the lemma is trivially fulfilled. If insteadDi ∧ Pj

is contained inDadd, then the lemma is also trivially fulfilled.
Study now the case whereDi is contained inDold andDi∧Pj

is not contained inDadd. We can then apply Lemma 3 with
P = Pn−1∪{P}. This gives us aDim+1

such thatDim
∧Pj |=

Dim+1
andDim+1

∧ Pj 6|= Dim
∧ Pj .

If Dim+1
is contained inDold, then the lemma is fulfilled.

If insteadDim+1
∧ Pj is contained inDadd, note thatDim

∧
Pj |= Dim+1

impliesDim
∧ Pj |= Dim+1

∧ Pj . This means
that the lemma is fulfilled. In this way we can repeatedly
apply Lemma 3 as long as the newDim+1

obtained is not
contained inDold andDim+1

∧ Pj not contained inDadd.
We will now prove that after a finite number of applications

of Lemma 3 we obtain aDim+1
whereDim+1

is contained
in Dold or Dim+1

∧ Pj is contained inDadd. Note that that
each application of Lemma 3 guarantees thatDim

∧ Pj |=
Dim+1

∧ Pj andDim+1
∧ Pj 6≃ Dim

∧ Pj . This fact itself
implies that there cannot be an infinite number of applications
of Lemma 3. �

Theorem 1 Let P be a set of negated conflicts that is not
inconsistent, i.e.P 6|= ⊥, and letQ be the output from Al-
gorithm 2 after processing all negated conflicts inP. Then it
holds thatQ ≃ P.

PROOF. LetPn−1 denote the set all negated conflicts inP

exceptP . Then it holds thatP ≃ Pn−1 ∪ {P} ≃ D ∧ P .
Lemma 4 implies thatD ∧ P |= Q. Left to prove isQ |=
D ∧P . Take arbitrary conjunctionQk in the outputQ. If Qk

is in Dold, then it must be in alsoD, i.e. Qk = Di for some
conjunctionDi in D. The fact thatDi is in Dold means also
thatDi |= P . ThusQk = Di |= D ∧ P . �

Lemma 5 LetPn−1∪Pn be a set of negated conflicts, and let
each component have only two possible behavioral modes. If
D is the output from Algorithm 2 after processing all negated
conflicts inPn−1, then a new call to the algorithm with inputs
D andPn gives an outputQ in which each conjunction is a
kernel diagnosis.

PROOF. Take an arbitrary conjunctionQk in Q. It holds that
Qk ≃ Di ∧ Pj for some conjunctionDi in D and some con-
junctionPj in Pn. If Qk ≃ Di, thenQk is a kernel diagnosis
sinceDi is. Next we investigate the other caseQk 6≃ Di.

Assume thatQk is not a kernel diagnosis. The assignment
Pj can be written ascp = Mp. Thus, we can writeQk as
Qk = Di ∧ (cp = Mp). Since by assumptionQk is not a
kernel diagnosis, we can remove one assignment, eithercp =
Mp or some assignmenta = Ma in Di, from Qk and obtain
a partial diagnosis. The partial diagnosis obtained is either
Di or D̄ ∧ cp = Mp, whereDi = D̄ ∧ a = Ma. Study
first the case whereDi is the partial diagnosis. By definition,
this means thatDi |= Pn−1 ∪ {Pn}, which impliesDi |=
Pn. This means thatDi would not be removed fromDold

and thus become one conjunction inQ. SinceQk = Di ∧
(cp = Mp) |= Di, bothQk andDi cannot be conjunctions
in Q becauseQ is in MNF according to Theorem 2. This
contradiction shows thatDi can not be a partial diagnosis.

Next, study the case wherēD ∧ cp = Mp is the partial
diagnosis, and let̄Ma denote the complementary element to
Ma. This means that both̄D ∧ cp = Mp ∧ a = Ma and
D̄∧cp = Mp∧a = M̄a are partial diagnoses. This means, by
definition, thatD̄∧cp = Mp∧a = M̄a |= Pn−1∪{Pn} ≃ Q.
SinceQk = D̄∧a = Ma∧cp = Mp, andQ is in MNF, there
must be anotherQm such thatD̄∧cp = Mp∧a = M̄a |= Qm.
According to Lemma 2, it can not hold thatQm = D̄ ∧ cp =
Mp ∧ a = M̄a. Therefore we can remove one assignment
from D̄ ∧ cp = Mp ∧ a = M̄a and still obtain a conjunction
d such thatd |= Qm. Note then that it can not hold that
d = D̄ ∧ cp = Mp since this would imply thatQk |= Qm.

Now we investigate the cased = D̄ ∧ a = M̄a. Let Ω
denote the set of assignments contained inD̄. The fact that
Qk = D̄ ∧ a = Ma ∧ cp = Mp means that each negated
conflictP ∈ Pn−1∪{Pn} contains an assignment inΩ∪{a =
Ma} ∪ {cp = Mp}.

Next, D̄ ∧ a = M̄a |= Qm means thatQm contains a
subset of the assignments contained inD̄ ∧ a = M̄a. This
further means that each negated conflictP ∈ Pn−1 ∪ {Pn}
contains an assignment fromΩm ∪ {a = M̄a}. This means
that aP ′ that does not contain any assignment fromΩm must
contain the assignmenta = M̄a. The consequence of this
is thatP ′ cannot contain the assignmenta = Ma. Since it
was concluded above that eachP contains an assignment in
Ω∪{a = Ma}∪{cp = Mp},P ′ must then contain the assign-
mentcp = Mp. Thus each negated conflictP ∈ Pn−1∪{Pn}
contains an assignment fromΩm ∪ {cp = Mp}.

We can now select one assignment from eachP ∈ Pn−1 ∪
{Pn} but with the requirement that the selected assignment
must becp = Mp or contained inΩ. By forming a conjunc-
tion Φ of these assignments, it will hold thatD̄∧ cp = Mp |=
Φ. ThereforeQk = D̄ ∧ a = Ma ∧ cp = Mp |= Φ. If Φ
is not one of the conjunctions inQ, there will be anotherQv

such thatΦ |= Qv. This means thatQk |= Qv andQi cannot
be contained inQ, which is a contradiction. Thus we have
shown that it cannot hold thatd = D̄ ∧ a = M̄a, and there-
fore thatD̄ ∧ cp = Mp cannot be a partial diagnosis. This
further means thatQk must be a kernel diagnosis. �

Theorem 3 Let each component have only two possible
behavioral modes, letP be a set of negated conflicts, and let
Q be the output from Algorithm 2 after processing all negated
conflicts inP. Then it holds that each conjunction ofQ is a
kernel diagnosis.

PROOF. It is not difficult to realize that, after processing the
first two negated conflicts inP, each conjunction of the output
Q is a kernel diagnoses. For each further negated conflict that
is processed, each conjunction of the new output will be a
kernel diagnosis according to Lemma 5. �


