Hybrid Test Environment for GPRS-
handling in Regional Processors

Jorgen Dahlgvist
LITH-ISY-EX-3062

14 August, 2000

Hybrid Test Environment for GPRS-
handling in Regional Processors

Master thesis performed in telecommunication
at Linkodping Institute of Technology

by
Jorgen Dahlgvist

LITH-ISY-EX-3062

Supervisor: Jonas Waldeck
Ann-Charlotte Linderson

Examiner: Lars Nielsen

Link6ping, 14 August, 2000

99-08-09/1i

Tey ﬂ"‘;‘b

Avdelning, Institution
Division, department

Department of Electrical Engineering

Datum
Date

2000-08-14

Sprak
Language

0 Svenska/Swedish
M Engelska/English

Rapporttyp
Report: category

0 Licentiatavhandling
M Examensarbete

0 C-uppsats

0 D-uppsats

0 Ovrig rapport

O

ISBN

ISRN

URL for elektronisk version

Serietitel och serienummer ISSN

Title of series, numbering

LiTH-1SY-EX-3062

Titel
Title

Hybrid Test Environment for GPRS-handling in Regional Processors
Hybrid testmiljo for GPRS-hantering i regionala processorer

Forfattare
Author

Jorgen Dahlqgvist

Sammanfattning
Abstract

When adding General Packet Service (GPRS) to the GSM infrastructure, the Base Station Controller (BSC)
has to have a new part, the Packet Control Unit (PCU), to handle this new interface. The PCU isbased on a
new type of Regiona Processor, the RPP. To test the software in the RPPs, a hybrid test environment was
created. This hybrid test environment has the capacity to verify the software to some extent. To be ableto
test on a higher level and to increase the availability of the hybrid test environment, it had to be rebuilt.

Thiswork aimed to rebuild the hybrid test environment and integrate/test the new parts needed. The new
parts were the Central Processor simulator (SEA), the group switch (GS4M) and the traffic simulator

(TSS2000).

The result of the SEA and GS4M integration was a “new” hybrid test environment that has an increased

availability. This means that the RPP can be reached from the CP (SEA) and up to 7 users per RPP|

magazine

can use the switching part at the same time and up to 16 RPP magazines can be connected to the gwitch. In
the “old” hybrid test environment only one user could use the switching part.

The TSS2000 is needed in two versions, one software and one hardware based, and how to conneg

two are left to be investigated. The hardware TSS2000 was not available in the end of this work. To

to test on a higher protocol level and save many expensive hours in the AXE target environment, the

integration of TSS2000 should proceed.

t these
be able

Nyckelord
Keywords

Abstract

When adding General Packet Service (GPRS) to the GSM infrastructure,
the Base Station Controller (BSC) has to have a new part, the Packet
Control Unit (PCU), to handle this new interface. The PCU is based on a
new type of Regional Processor, the RPP. To test the softwarein the
RPPs, a hybrid test environment was created. This hybrid test
environment has the capacity to verify the software to some extent. To be
ableto test on ahigher level and to increase the availability of the hybrid
test environment, it had to be rebuilt.

Thiswork aimed to rebuild the hybrid test environment and integrate/test
the new parts needed. The new parts were the Central Processor simulator
(SEA), the group switch (G$4M) and the traffic ssimulator (TSS2000).

The result of the SEA and GS4M integration was a “new” hybrid test
environment that has an increased availability. This means that the RPP
can be reached from the CP (SEA) and up to 7 users per RPP magazine
can use the switching part at the same time and up to 16 RPP magazines
can be connected to the switch. In the “old” hybrid test environment only
one user could use the switching part.

The TSS2000 is needed in two versions, one software and one hardware
based, and how to connect these two are left to be investigated. The
hardware TSS2000 was not available in the end of this work. To be able
to test on a higher protocol level and save many expensive hours in the
AXE target environment, the integration of TSS2000 should proceed.

Foreword

This master thesiswork has been carried out at Ericsson Radio System
AB in Link6éping, under the technical supervision of Jonas Waldeck and
administrative supervision of Ann-Charlotte Linderson.

The examiner at Linkoping Institute of Technology was Professor Lars
Nielsen at the Department of Electrical Engineering.

Many thanks to all the helpful people at Ericsson who have supported me
in my work. None named, none forgotten.

A special thank to my wife who have supported me through my whole
education and taken care of our four kids while | has been, as | feel it, out
of reach.

Link6ping, July 2000
Jorgen Dahlqvist

Contents

1

7

INTRODUCTION.uuuuueeeeeeereeeeeeeeeeseeessses 1
1.1 BACKGROUND AND PURPOSEceeeeeettuneieseeeseessniasseessseessnnssssesees 1
T2 OBUIECTIVES. ...ciitttueeeeeeeeeeeteeeeeeeeseessaasssseesseesssaassseessensnaanseeeeeenns 1
1.3 LITERATURE SURVEY ..ceettiieieteeeeeeeeeeeeeeeeeeeeeeeseseeseesssssssssssssssssssssnnes 2
L4 DISPOSITION .eteeeuueteseeeeeeeesaaesseesseeessaassseesseessnaasrseessensnaaasreeeeenes 2

BASE STATION CONTROLLERiveeirrrrrrrrrrrrrrrrrrvsssssssssnes R]
2.1 CENTRAL PROCESSOR. ...ceuuiitieeettttteeieeeeseeesiiaasssseseeessnaasssseseessnnns 4
2.2 PACKET CONTROL UNIT covvvvvieriiiriiseeessesnessssssssssnssssesnnns s 5

2.2.1 The RPP PIAIOTM.......ccoooeeeeeeeeeieeeseeeeeeeee e 6
2.3 GROUP SWITCH SUBSYSTEM ..vvvvvvvvveeerrernnssnnssnsssnnnnnnsnssnsnnsnssnnnnns 7

SOFTWARE TEST AND VERIFICATION......cccooeeeeerurevnvvnnnnnes 9

HYBRID TEST ENVIRONMENTcceeeeerrerrrrrrrrnnvennnnessesssnnnes 10
g T = N = = T 10
B2 SE A e ————— 11
4.3 RPP MAGAZINEcceeeeeeeeee et e e et eeee e e e e e e e eeaneeeseeseeenenanan 12
R 17|V 14

Bed] GOREFAL ... e e 14

4.2 SPM oo 16

Bid.3 TSM.oeeeeeeeeeeeeeee e 17
T IS 2400 R 17

SEA AND RP CONNECTION.....uuuuuueeeeeeeeeeeeeeeeessseessssssssssssssssses 18
5.1 THE CONFIGURATION FILE 1uuuieiiieeeerrrniiseeeeseessssassseesreeessnnnssseesees 19

5.1.1 Creating the cOnfiguration file...............ccccoeoeveveiesiesesesesesiesesesesens 19

5.1.2 Altering the Configuration Fileccccccooviiviiieiieiinieiieieeeenn 20

5.1.3 The external CONNECLIONcccceeeeeeeeeeeeeeeeeeeeeeeeee e 21
5.2 CONNECTION TEST .uvvuuturrrerresrsrssnsssnsnssnssssnnsssssssssssssssssssssssssssssas 22
5.3 DUMP REBUILDING ...ceetttttuuaaeeeeeeeeeessasssesesssesssaassssesseessnnnaesseseeees 26

GS4M IMPLEMENTATION AND VERIFICATION.............. 31
6.1 GSAM GRAPHICAL USER INTERFACEciiiieeeeteeeeeeeeeeeeeesiieesseeeses 31

6. 1.1 INVESTIGALION ...ttt 31
6.2 HARDWARE INTEGRATION ..uuuiiieeeetteeaeeeeeeseesssnaesesesseeessnaesesseeees 35

0.2.1 EXIernal CONNECIIONSooeeen 35

6.2.2 INECrNALl CONNECCLIONS ..o 36
5.3 D SP JOINT TEST tvvvvvvvrerrererrnnrsnnsssssssnsssssssnssssssssssssssssssssssssss 37

0.3.1 DESCHIPIION ...ttt ettt 37

0.3.2 VEFIfICALION. ..ottt eees 39

TSS2000 ...ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeesesess 42

8 T €= = =7 TP 42

7.2 TSS2000 TOWARD SEA ...ttt e e eeea e e e e aeeees 42
7.3 TSS2000 TOWARD GSAMovvvveiieeeieieeeeiinisessssssssns s 43
8 RESULT AND REFLECTIONSoouuttttteteeeeieeeeeeeeeeeeeeesssesssssenes 45
9 ABBREVIATIONS .ceetttetttteeeeeeeeeeeeessssessssssssssssssssssssssssssssssssssssses 48
10 REFERENCES ... eeeeeeeeereeeeeeeeeeeesssssssssssssssssesseseseeeseeeeseessesesees 51
JO.1 INTERNAL ERICSSON ...ceeviiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssssesssssssssssssees 51
JO.2 EXTERNAL .ttteeetttteeeeeeeeeesttaiessseeseeessansssessseesssasssssssersssaasssseseens 52
11 APPENDICES ...eeeeeeeeeeeeeessssssessssssssssssssssssssssssssssssssssssssses 53
11.1 WI1ZARD CREATED CONFIGURATION FILE .. .iieeeeeeeiieeeeeeeeeeeneaeeeeens 53
11.2 ALTERED CONFIGURATION FILE +.eveeteeeuieeeeeeeeeesnaeseeeeseessnnnaesseeeees 65
11.3 SYNCHRONISATION FRAMES ..ccetiiiiieieeeeeeeeeeeeeeeereeeeeseeseesesesssssessees 77
11.4 SLOTLOGTOOL RESPONSE LOG .. ceeeeeeeennieeeeeeeeessnnaessessseessnneessseeees 84
11.5 GSL INTERFACE ACTIVATION ..uiieeeteteeeeeeeeeeeeesnesssessseessnnnnsseeeeees 89
11.6 GSL INTERFACE DEACTIVATION eevttieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseees 89

11.7 DSP SYNCHRONISATION SIGNALS .cevveueeeeeeeeeeeeieeeeeeeeeesnnaeseeeenes 90

Figures

FIGURE 2.1 BASE STATION CONTROLLER.coeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 3
FIGURE 2.2 CENTRAL PROCESSOR SUBSYSTEM (CPS) OVERVIEW.cuven.... 4
FIGURE 2.3 PACKET CONTROL UNIT.......ccooeeeiiieeiiaeee e 5
FIGURE 2.4 GPRS DATA TRANSMISSION PROTOCOL STACKS. ...cvvvvveeiiiiiaaaann, 6
FIGURE2.5 RPP — LOGICAL CONNECTIONS BETWEEN THE DSPS AND THE
DL2 LINKS. c.coooiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeseesssssssssssssssssssssssssssssssnns 7
FIGURE 2.6 GSS HARDWARE ARCHITECTURE.cooeeeeeeeeeeeeeeeeeeeeee e 8
FIGURE 4.1 EXISTING HYBRID TEST ENVIRONMENT.cccuuviiiiiiiiiiiiiinnnn, 10
FIGURE 4.2 DESIRABLE HYBRID TEST ENVIRONMENT. ...ccevvvuvvrenaaeeeeeseisvvnnns 11
FIGURE 4.3 RPP MAGAZINE FRONT VIEW. «eceeeeeeeeeeeeeeeeeeeeeeeee e e 13
FIGURE4.4 RPP MAGAZINE STRUCTURE WITH GS4M INTERFACE. 13
FIGUREA.S COMPLETE GS4M. ... 14
FIGURE 4.6 GS4M IN THE NEW TESTRIGG. «.cceeeeeeeeeeeeeeeeeeeeeeeee e 15
FIGUREA.7T GS4M SUBRACK OVERVIEW.oceeeiueeeeeaseeeeeseiisssenesaeessssinnns 16
FIGURE 5.1 SEA COMPONENTS.cuvvueeiaaeeiieeeiiieeiieee e e e sseiaaeee s e e e e e ssnnns 18
FIGURE 5.2 SEA CONFIGURATION WIZARD.ccooeeeeeeeeeeeeeeeeeeeeee e 20
FIGURE 5.3 SEA CONFIGURATION WIZARD —CONFLICTS. «.uuveveeeeeieeeervennn. 20
FIGURES.4 SEA CONTROL CENTER. ..ceuceveeeieeeiiieeeieaeeeeeeeciiaeeeee e e eeinnns 24
FIGUREB.S WIOL CONSOLEcocooeeeeeeeeeeeeeeee e 26
FIGUREB.6 [OG DIRECTORY STRUCTURE.cccevvuuueeaaaseeeeeeiisseineseeessssinnns 28
FIGUREG.1 GS4M GRAPHICAL USER INTERFACE — MAIN WINDOW. 33
FIGURE 6.2 GS4M GRAPHICAL USER INTERFACE — WIDE BAND. 33
FIGURE 6.3 GS4M GRAPHICAL USER INTERFACE — CONFIGURATION WINDOW
... 35
FIGURE 6.4 GS4M GRAPHICAL USER INTERFACE — ALARMS IN EM. 35
FIGURE 6.5 EXTERNAL CONNECTIONS OF GS4M.cccovviiiiiiiiiiiiiininnnn, 36
FIGURE 6.6 INTERNAL CONNECTIONS OF GS4M. ..o, 37
FIGURE 6.7 DSP JOINT TEST - LOGICAL CONNECTIONS. ...ccevveveeiiiiaeaaaenenn, 38
FIGURE 7.1 TSS2000 SFT TOWARD SEA CONNECTION — OVERVIEW. 43
FIGURE 7.2 TSS2000 CONNECTIONS TOWARD GS4M.uuvvevviaiiiiiecrnnnne. 44
FIGURE 8.1 OVERVIEW OF THE “NEW’’ HYBRID TEST ENVIRONMENT. 45
FIGURE 8.2 OVERVIEW OF THE “NEW” HYBRID TEST ENVIRONMENT WITH
TSS2000. ... 46
Tables
TABLEG.1 DL2 LINKS BETWEEN GS4M AND RPP MAGAZINES. 40

1 Introduction

1.1 Background and purpose

An addition to the GSM infrastructure is the General Packet Radio
Service (GPRS), which offers packet-oriented data communication. One
example of packet-oriented data communication isthe Internet. In the
traffic interface between the GSM network and the GPRS network is the
Base Station Controller (BSC). The BSC node has to be rebuilt, hardware
and software, when the GPRS interface are to be added to the GSM
network. The new part in the BSC node is the Packet Control Unit (PCU)
that is the GPRS handling unit. The mgjor part of the PCU is based on the
so-called regional processors.

Function test (FT) of the regional processor software is performed in an
AXE target environment, several local GSM/GPRS networks, aswell as
in asimulated environment.

One more easily accessible alternative to the AXE target environment isa
hybrid test environment. In this test environment, the regional processor
software can be verified, inreal time, to some extent.

The purpose of this thesis work isto analyse and implement some new
parts of the existing hybrid testing. The intention with implementation of
the new partsisto get abetter availability of the hybrid test environment
and to get the possibility to perform function test at a higher protocol
level.

That opens up the possibility of performing moretestsin the hybrid test
environment and thereby decreasing the number of expensive hours
needed in the AXE target environment.

Since the hybrid test environment is more easily accessible, it should be
possible to detect software faults in an earlier phase. This decrease the
cost for fault corrections, as the later afault is detected the more
expensive it isto correct.

1.2 Objectives

The objective isto integrate the new parts in the hybrid test environment
to get a better performance and availability in the “new” environment. In
more detail, the objectives are as follows:

* Integrate a new program suite, called SEA, in the hybrid test
environment and also give a short description on the program handling
procedure.

* Integrate and describe the performance of the GS4M hardware in the
“new” hybrid test environment.

* Analyse the GS4M GUI and propose improvements.

* Investigate the possibility to integrate TSS2000 in the hybrid test
environment and give a proposal on how to perform the integration.

1.3 Literature survey

To get an understanding of the hybrid test environment, an extensive
literature survey was performed at the Ericsson internal web and
document stores. The literature survey resulted in a great amount of
documents, where each of the documents describes a small part of
interest. Some external references that give some help in understanding
the basics in the concerned subject where found, [23, 24].

1.4 Disposition

Chapter 2: Base Station Controller gives a general description of the
Base Station Controller with the internal parts, the Packet Control Unit
and the Group Switching Subsystem, that are of interest from the hybrid
test environment point of view.

Chapter 3: Software test and verification is a brief description of the
different test and verification stages in the Packet Control Unit
development process.

Chapter 4: Hybrid test environment is a short overview of the existing
hybrid test environment and what changes are to made to get the desirable
result.

Chapter 5: SEA and RP connection gives a description of the
implementation of a program suite called SEA in the hybrid test
environment.

Chapter 6: GS4M implementation and verification presents the
implementation and verification of the hardware of a part called GS4M. It
also gives a short description and analysis of the GS4M graphical user
interface.

Chapter 7: TSS2000 is a description of that is needed to implement the
TSS200 part in the hybrid test environment. And a proposal of how to
make the implementation.

Chapter 8: Result and reflections presents the results of the changes of
the hybrid test environment. It also gives some reflections of what has to
be done to reach the desirable goals with the “new” hybrid test
environment.

2 Base Station Controller

This chapter is a general overview of the BSC node and the interfaces
towards the BTS node and the SGSN node. The interface towards the
MSC node is not covered in this report. Thus, only the parts that are
involved with the GPRS handling in the BSC node are mentioned.

BSC
Base Station Controller

MS Toward MSC ya \
Mobile Mobile Switching Centre { ™~~~ 1
Station s —

G%L
I

PCU
BTS

Base Transceiver Station

\ CP)
\\ //
Internet SGSN @000
Serving GPRS Support Node

GGSN
Gateway GPRS Support node

| |
I I
-
| GSS |
| |
|
. i

Gb

Figure 2.1 Base station controller.

The hardware and software structure of the BSC node is based on the
telephone exchange system AXE10. The switching and
telecommunication part in the BSC node consists of a source system
caled APT.

The APT implements the functionality of the BSC node including the
functionality of the logical GPRS node PCU. The APT is controlled and
supervised by a control system called APZ.

The control system APZ isbased on a Central Processor (CP) that co-
operates with Regional Processors (RPs) in PCU and the Group Switch
Subsystem (GSS) connected through a bus called RP Bus (RPB).

The PCU connects to the Gb devices (SGSN) and to the GSL (Abis)
device (BTS) viathe GSS. The GPRS traffic is multiplexed with the
circuit switch traffic in a Subrate Switch (SRS), included in the GSS.

2.1 Central Processor

The CP does not have a central part in the hybrid test environment,
therefor this chapter is a very short presentation.

For reliability reasons the CP is duplicated, with the twin processors
running in synchronism. They operate in separate states, executive (EX)
and standby/working (SB/WO). The CP in state executive controls the
system. The standby/working CP takes control of the system instantly, in
the event of afault in the executive side.

The maintenance in the APZ, i.e. fault detection, recovery diagnostics and
alarm generation, is handled by the Maintenance Subsystem (MAS).

RPB
CPS Store Store
APZIAPT CP-A CP-B APZ/APT
SW SwW

MAS

Figure 2.2 Central Processor Subsystem (CPS) overview.

All the dataiin the CP memory is backed up regularly, called dumping.

The backup is called a dump. To load new APZ/APT software into the
CP, amanually built dump isloaded into the store and then loaded into
the CP memory.

The terms reference dump and working dump are used for dumps. The
reference dump contains APT blocks and corrections. The working dump
isareference dump with data transcript (DT) loaded. The data transcript
contains information about the configuration of al the different parts of
the system and the connections between them.

2.2 Packet Control Unit

The PCU is the GPRS handling part in the BSC node. The major part of
the PCU implementation is donein anew type of RP, the RPP (RP with
internal PCI bus). The PCU consists of up to 14 RPPs, these RPPs are the
GSinterface part of the GPRS data transfer (see Figure 2.3). The function
of the RPP is to distribute PCU frames to the Gb and the GSL (Abis)

interfaces.
ﬁ PCU ﬁ
_ Gb - | I
< ™ RPP
4/ﬁ//v RPB-S
T > RPP CP
) |
GsL Ethe‘rnet

o /

Figure 2.3 Packet Control Unit

The data transmission protocol stack in GPRS, except for the GGSN
node, is shown in Figure 2.4.

The PCU isresponsible for handling the BSSGP and Frame Relay layer
of the Gb interface and Radio Link Control (RLC) and Medium Access
Control (MAC) protocol layers on the GSL (Abis) interface. The PCU
distributes PCU frames to the Gb interface and the GSL interface by
segmentation/assembly of LLC frames into/from RLC/MAC radio
blocks.

i i
Application i i _
]]
IP/X.25 i i -
i i GTP [~
SNDCP : : SNDCP|
1 1
LLC | I | LLC F--
! LLC relay !
| | P
RLC] RLC BSSGP[i BSSGP
''''''''''''' I ===]
MAC {1 MAC | Frame [Frame | L2 [--
| Relay I | Relay
1 1
GSMRF [| GSMRF—AbisLl ™7 AbisL1| L1bis [T | L1bis
1 1
| |
MS BTS ,pis PCU o, SGSN

Channel Coder

Figure 2.4 GPRS data transmission protocol stacks.

The communication in SGSN node to BTS node direction is called
downlink and communication in the other direction uplink.

2.2.1The RPP platform

General

The RPP provides the BSC node with both Packet Switched traffic and
signalling between the SGSN node (Gb) and the BTS node (GSL) on
physical connections switched through the group switch.

An RPP can work towards both the Gb and the GSL interfaces or towards
GSL only. If thereisonly one RPP in the PCU it will work towards both
Gb and GSL. If there are more than one RPP, each RPP may work
towards either GSL or towards both Gb and GSL.

Each RPP consists of 2 boards (CPU board and /O board) and is one half
height plug-in unit that physically occupies the space of two plug-in units.
The RPP is based on a Power PC hardware platform. It ishoused in a
GDDM-H with Ethernet connection in the back plane.

The RPP is equipped with two DL2 interfaces (toward Gb/GSL) and two
RP bus interfaces (toward CP). It also contains DSPs to provide the DL2
links with the necessary 1/0 space. Only one DL 2 is connected to each
card but can be reached between the different cards on a RPP unit viathe
back plane. A number of RPP units can be interconnected to the Ethernet
interface inside and even outside the magazine.

One RPP Central Processing Unit (CPU) can serve eight DSPs.

There are three DSPs dedicated to each DL 2 for GSL interface handling
and two DSPs handling the Gb interface on one of the DL 2s, see Figure
2.5.

Each DL2 consists of 32 64 kbit/s GPH devices. Each GPH device can be
configured for the GSL interface as 16 kbit/s PDCHs or for the Gb-
interface as 64 kbit/s Gb devices. A number of Gb devices constitute one
wide band physical link.

RPP

DSP
Gb L

DL2-0 GPHDev =

|

DSP | | | CPU
GsL |

] DSP

DL2-1 GPH Dev U csL | F

|

Figure 2.5 RPP — logical connections between the DSPs and the DL2 links.

2.3 Group Switch Subsystem

This section is a general overview of the Group Switch Subsystem (GSS)
in the BSC node. It is by no means intended to be a complete description
of the GSS.

The main functions of the Group Switching Subsystem (GSS) are to
connect and disconnect a channel in one PCM system to a channel in
another PCM system. In the case of calls using normal both way
connections, two paths through the switch are set-up, one in each
transmission direction. PCM links from other nodes are connected via
Exchange Terminal Circuits (ETCs).

For reliability reasons, the entire switching network is duplicated into two
separate synchronously working planes. Three CLock Modules (CLM)
perform the timing in the group switch. Synchronisation is implemented

by means of clock reference sources and software algorithms containing a
number of synchronisation methods.

Using a time-space-time architecture, the group switch (GS) performs
switching within and between time-multiplexed buses.

The time switching is performed by the Time Switch Modules (TSMs)
and the space switching by the Space Switch Modules (SPMs). For BSC
hardware, according to the standard configurations, a Subrate Switch
(SRS) isdsoincluded in the GS.

The maximum number of portsis 128k, which are all switchable. The
BSC node is however only using maximum 64k ports.

The SRSM module is attached to the 64 kbit/s switch ports and thus
occupies some of the switching network capacity.

| | | |
ETC TSM [T SPM [TSM O SRSM J

=1 %l el "l el

d [[[d

RPB-S

To Central Processor

Figure 2.6 GSS hardware architecture.

3 Software test and verification

This chapter is abrief description of the different test and verification
stages in the PCU development process. It is meant to give an insight
about where in the devel opment process the hybrid test environment can
be used.

Before the test and verification steps are described afew concepts have to
be explained.

* A module is one or severa logically coherent RP software function(s).
* A blockisone or several logically coherent CP software function(s).

Below follows a brief description of the different test and verification
stages.

* Basic Test (BT) aimsto test and verify the code within amodule or a
block.

* Process Unit Test (PUT) aimsto test and verify the interfaces between
modules.

» Basic Function Test (BFT) aimsto test and verify the interfaces
between blocks and the interfaces between blocks and modules.

* Function Test (FT) aimsto test and verify the functiona interfacesin
atarget environment.

» System Verification (SV) aimsto test and verify the functional
interfaces in a target environment from a customers point of view.

The hybrid test environment can be used in Basic Function Test and
Function Test.

4 Hybrid test environment

4.1 General

In the existing hybrid test environment, see Figure 4.1, the software can
be verified, in real time, to some extent. The hybrid test environment
could be improved, better availability and to be able to test on a higher
protocol level, if the connections that are not working could be
implemented. Some components have to be replaced to make the hybrid
test environment work as desired.

The HWemu and RPPsim are simulated equivalencies of the CP and RPP
respectively.

RPX is a connection server between HWemu and RPPsim.
Musseisavery simplified equivalent of the GSS. It is a one-card hybrid
with the connections through the hardware managed from aGUI on a
UNIX workstation, thus not controlled from the HWemu (CP). It has two
DL2 interfaces, i.e. it can connect to one RPP at atime.

TSSisatraffic generator that simulatesreal traffic cases, i.e. sSimulates
the BTS node and SGSN node.

The HWemu, RPX, RPPsim, Adapter and the TSS are software products
that run on aUNIX workstation, while the RPP isrea hardware. The
dashed lines means that the connections are desirable, but not
implemented.

The RPPsim and Adapter are not handled in this report.

Figure 4.1 Existing hybrid test environment.

10

In Figure 4.2, the HWemu and the RPX have been replaced with SEA

and the RP Connection Server (RPCS). The SEA program suite isanew
CP emulator that in the future will replace the HWemu program. See
more about SEA in chapter 4.2.

TSS2000 is hardware (ST) or software (SFT) based, and will replace the
software based TSS that is used in the existing test environment. Musseis
replaced by GS4M, which is described in chapter 4.4 and 6.

RPP

DL2

GSAM TSS2000
E-1

Figure 4.2 Desirable hybrid test environment.

The hardware in the desirable hybrid test environment, except the
TSS2000, is called the testrigg. In the existing hybrid test environment
the corresponding hardware is referred to asthe old testrigg.

4.2 SEA

SEA isdeveloped by Ericsson Infotech EIN/T. It consists of a number of
modules that simulates the AXE hardware and software, in this case the
BSC node. Some modules are executing the real BSC node software,
while others are just ssimulating the signalling between the CP and the RP.

SEA is ascalable architecture for smulator based test environments and
other simulator-based products. This architecture enables users to add
their own components to implement new interfaces. SEA is a component
oriented architecture using a component model based on the Microsoft
Component Object Model, COM.

SEA consists of three layers. osCore, ssmCore and appCore.

osCore and simCore acts as the operating system in SEA. The appCore
contains the simulated AXE components, like a CP part (CP 212 20) and
RPPsim. The environment connected to SEA can be set-up dynamically,

11

thereis no static linking between the components. For more information
about SEA see [22] and chapter 5.

4.3 RPP magazine

This chapter is a description of the different parts housed in the RPP
magazine.

The RPPs are housed in a GDDM-H that is a half height generic subrack
for device boards. The standard configuration of the magazine consists of
an RP pair (RP4), aDLHB pair, aEPSB pair and 14 slotsfor 7 RPP plug-
in units.

In Figure 4.3 afront-view of the magazine can be seen. In position O there
isan EMB board (RP4 in the old testrigg) and in position 19 an RP4
board. They have control over the addressing in the magazine and
distribute the power supply to the backplane, and thus to al the other
boards in the magazine (see Figure 4.4).

In the configuration with connection to Musse, there was also one board
in position 1, which distributes two DL 2 links from a front-connector to
the backplane (not included in the figures).

In the configuration with connection to GS4M, thereisone DLMUX
board (DLHB), in position 1. There can aso be one DLMUX board in
position 18 for redundancy purpose, but that is not connected. The DLHB
has one front-connector with aDL3 interface. It splitsthe DL3 into 16

DL 2s and distributes them to the backplane. More about thisin chapter 6.

As mentioned before the magazine has an Ethernet connection in the
backplane. One Ethernet switchboard (EPSB) is mounted in the magazine
to connect the backplane to the Ethernet. All the RPP units are reached
from the Ethernet through that switchboard.

There are only five RPPs mounted in the magazine, which leaves four

positions vacant. Those can be used for two RPPs or ETC boards that are
needed when connecting TSS2000 (see chapter 4.5).

12

°TeEDe[rRIR]I[R][R][R R |C
MiLlPlP|lP|P|P]|P P
BlH|S|P|P|P|P]|P 4
BlB
o o
0 1 23456789 10111213 1415161718 19
Board position

Figure 4.3 RPP magazine front view.

GDDM
ToGHM ¢ DLHB
|
DL2B 1 RPP
Tothe EPSB h
Ethernet]
EMB RP4

ToPC <« |
(GAM program) -48V

Figure 4.4 RPP magazine structure with GS4M interface.

In the original configuration of the testrigg RPP magazine the boards in
position 0,1 and 2 should be in pair with the boards in position 19, 18 and
17 respectively. But since the zestrigg has been used with Musse at the
same time as the GSAM has been implemented the configuration is as
mentioned above.

13

4.4 GS4M

4.4.1General

The GSAM contains al the necessary functionality to be a complete
switch. It consists of the switch core (SPMs and TSMs), three clock
modules (CLMs), subrate switch (SRS) and all the RPs needed to control

this (see Figure 4.5).

There are aso clock references, one RCLB or two ICBs (not included in

Figure 4.5). Those are not mentioned further because they are not

included in the festrigg GSAM.

Switch core G3AM

I—'_I:

SPM CLM

L

RP

TSM

TSM

TSM

SRS

TSM

DLHB

I_A_J
RP

Figure 4.5 Complete GS4M.

DLHB

DL3

DL2

The DLHBs are boards included in the RPP magazine.

14

SNT

SNT

SNT

SNT

The Switching Network Terminals (SNTSs) are the common name for
terminators in the AXE. In the testrigg a SNT can be seen asaDL2 in the

RPP magazine, connected to a RPP or an ETC when connecting TSS2000
to GHAM.

The GSAM that is used in the testrigg is not acomplete GSAM (see
Figure 4.6). The clock part only consists of one clock module and all the
RPs are present but not all are connected. The subrate switch is not a part

in the testrigg GSAM because the purpose is not to handle circuit switch
traffic.

Switch core G3AM
RP
SPM |
CLM
TSM | | SNT
1T E
| N SNT
4 TSM [f | s DL2

FA—J
RP

Figure 4.6 GS4M in the new testrigg.

The GSAM subrack islogically divided into left side and right side, plane
A and plane B (see Figure 4.7). The dark grey marked boards are not
included in the festrigg subrack and the pale grey marked boards are
present but not connected.

15

Plane A Plane B

4 —>
P Left side L Right side -
R
R|T|T|S| [R|S| |R|C|c| [c|C|R| [S|R| |S|T|T|R
P|S|S|P||P|R||P|L|L||glL|P| |R|P||P|S|S|P
4|4|D g B|B||/|B g D| 4|4
BB(B|| |5 c >| ||8|B|B
B

Group Subrate Clock Clock Subrate Group
switch switch switch switch

Figure 4.7 GS4M subrack overview.

In the original subrack plane A and plane B are working in parallel for
redundancy purpose. The left most and right most RPs, called TSM-RPs,
control the TS4Bsin each plane. If one of the TSM-RPsisfaulty the
other TSM-RP takes control over both planes.

As can be seen in the figure, the TSM-RP in plane B is not connected,
thus the other TSM-RP has control over both planes. The controlling
TSM-RP is connected to the TS4Bs in plane A through the backplane and
the TS4Bs in plane B through two cables.

4.4.2SPM

In the GS4AM there are two SPDBs and each contains one SPM.

One SPM has 32 inputs and 32 outputs, a so-called 32x32 matrix. Each
output isimplemented as a multiplexer. This means that every output can
be connected to any of the inputs. At the two SPMsin GS4M areonly 8
inputs and 8 outputs used. This means that the SPMs can connect to 2x8
TSMs together.

The SPDB normally takes in three clock signals and performs a mgjority

vote on these. If aclock signal is dead, it does not participate in the
majority vote. This means that one CLM is sufficient, asin the festrigg.

16

4.4.3TSM

A TSM has onelogical input and one logical output. A number of
timeslots are time multiplexed on these. The function of aTSM isto
change the order of the time multiplexed timedlots.

One TSM can handle 512 MUPs. In the GS4M there are four TS4Bs and
each contains four TSMs. Thus, the TSMs can together handle 16x512
MUP.

Each TS4B has four DL 3 front-connectors. So, without any redundancy,
the GS4M should be capable of handling 16 RPP magazines. This has not
been verified because there is only one RPP subrack present in the
testrigg.

4.5 TSS2000

TSS 2000 is aproduct for test and ssmulation, which can be used for
different purposes including traffic case test with user-defined traffic
mixes. It makesit possible to simulate the BTS node and the SGSN node
in the hybrid test environment. The physical capacity limit for TSS 2000
is64 PCM systems and 256 time slots, more than enough. The simulation
is controlled by test programs, which are a number of instructions written
in ahigh-level language. The TSS 2000 user interface is executed on a
UNIX workstation.

TSS 2000 provides built-in communication protocols such as Signalling
System No 7, LAPD, and STC-STR. The Signalling System No 7 and
LAPD protocols are needed to implement TSS2000 in the hybrid test
environment.

The connections toward GS4M will be made via ETC boards that can be
mounted in the RPP subrack. This means that the hardware based
TSS2000 has to be used.

More about this in chapter 7.

17

5 SEA and RP connection

This section is a description on the work around the connection between
SEA and the RP hardware. There are several ways to establish the
connection but I'm just describing the way that I used.

Figure 5.1, isavery rough overview of the SEA components, i.e. only the
components that are of interest for the connection between SEA and RP
hardware are added.

The CP21220 component, which is loaded with the dump, simulating the
CPin the PCU and are connected to the RPBH-S. The RPBH-Sisa
component that controls the serial RP-bus (RPB-S).

The dashed RP component is created by the SEA Configuration Wizard
(see chapter 5.1.1) but has to be replaced by the RPProxy to be able to
connect to the external RP Connection Server (RP CS). The Connection
Server isasmall program that communicates with both the RPProxy and
the RP hardware.

SEA

4 N

CP21220

RPBH-S
RPB-S

rd

RPProxy

K (to RPProxy) /

RPP HW

Figure 5.1 SEA components.

18

5.1 The configuration file

The configuration file (appendix 11.1) contains information about the
components defined on the dump and how they are configured and
connected to each other. The SEA Configuration Wizard creates this
configuration file from the dump.

Thefirst thing to do is to create the configuration file. The next step isto
alter the configuration file and tell SEA that, instead of using an RPP
simulation, you want to use real RP hardwarei.e. replacing the RP with
RPProxy, se Figure 5.1.

There are afew stepsto take to get the hybrid environment up and
running:

» Create the configuration file.

» Alter the configuration file to add the RP proxy.

o Start the OSE system daemon and the link handler.

o Start SEA with the new configuration file.

5.1.1Creating the configuration file

The SEA Configuration Wizard (se Figure 5.2) is used to create the
configuration file. The wizard can be started from the “Tools” menu in
the SEA Control Center or from a shell with #eeconfig command.
Below follows a short description of the procedure used to create the
configuration file.

To create the configuration file, in the configuration wizard, is a
straightforward procedure. Besides the two fields under the “Dump” tab,
“CP dump” and “AXE Manager Configuration File”, there are a choice of
“CP Model” under the “CP” tab that has to be done, in this case 21225.
After this configuration it is time to launch the wizard, by clicking the
“GO” button.

19

Figure 5.2 SEA Configuration Wizard.

While the wizard is launching, it generates questions like that in Figure
5.3. In this case, the “EMRPSIM.EMRPD1.1" part should be selected.

Figure 5.3 SEA Configuration Wizard —Conflicts.

When thewizard is done, a configuration file is created with a path and
name defined in the “AXE Manager Configuration File” field.

5.1.2Altering the Configuration File

As stated earlier, it is necessary to alter the configuration file generated
by the SEA Configuration Wizard. A configuration file consistsrefite,

20

connect and config statements. The complete file can be seen in appendix
11.1, but selected parts of thefileis viewed below:

Create the CP

create CP21220.CP21220.1 CP

Create the RPBH

create RPBH.RPBHS.1 RPBH_3

Create the RP

create RPSIM.RPPS1.1 RP_98

Connect RPBH to CP

connect RPBH_3 CP IrphbServer 0
Connect RP to RPBH

connect RP_98 RPBH_3 IRpbSServer 30

There may also be RP software simulations attached to the simulated RP
that are to be exchanged by an RP proxy. The create and connect
statements for these RP software simulations could be removed from the
configuration file, since there is no reason to connect RP software
simulations to an RP proxy.

To let RP position number 98 be handled by real RP hardware, it is
necessary to change the statements above to this:

Create the CP

create CP21220.CP21220.1 CP

Create the RPBH

create RPBH.RPBHS.1 RPBH_3

Create the RPPROXY

create RPPROXY .RPPROXY S.1 RPP_HW

Connect RPBH to CP

connect RPBH_3 CcP [rphbServer 0

Connect RP to RPBH

connect RPP_HW RPBH_3 IRpbSServer { 98 RPPHW }

Note that the connect statement between the RP and the RPBH
(RPP_HW and the RPBH_3) now contains a second argument. That
argument is used to set the name of the RP proxy. Thisis the name the
connection server uses to connect to the RP proxy component.

The compl ete atered configuration file can be seen in appendix 11.2.

5.1.3The external connection

In order to get the connection server (RPCS) to work it is necessary to
have the OSE system daemon (osesysd) running on the workstation. Only

21

one instance of this daemon should be running on the workstation at one
time.

Secondly, it is necessary to have alink handler running on the
workstation. If the RP board is connected to the workstation on the serial
port, the link handler to use is “lapimhp”.

In this case, to connect to the RP via the Ethernet, the link handler
“Inhethc” is used.

The connection server could ether be started from the command line,
from the home page of the RP proxy component or from within the
configuration file. In this case it is started from the configuration file.
By adding aronfig statement to the configuration file, the connection
server will automatically start the next time SEA is launched.
Theconfig statement looks like this:

config RPP_HW {
rpproxy_setstate -bl 1
rpproxy_startcs -trace -hp "rp1111/CP_sim"

}

5.2 Connection test

The only programs that are started in the RP on power on is the operating
system (OSE Delta) and the system program, the APl named Razor. The
next steps to get the RP running is to load, if it is not already loaded, and
start the application programs. The load/start is done by the CP and that
procedure is calledeblock.

The tests in this chapter only consider the connection between SEA and
the RP hardware. The test case was to check if it was possible to get a
stable connection between SEA and the RP hardwWatéocking and
blocking, i.e. start and stop the application software in the RP, are a
critical part of the communication between SEA and RP, so if that works
the connection test case is successful.

When the tests started, the latest version of SEA was built for the APZ P6
version of the control system. The operating system in the RP did not
support the APZ P6 so it had to be updated. As a consequence of that, the
dump had to be rebuilt, i.e. it was not built for the new software in the RP.
The rebuilding of theump is described in chapter 5.3.

The testing started with SEA version R3A but #aé/ocking failed

because of lack of support in SEA for the RP type to connect to. There
came one patch (SP1) for the R3A version and a new version R3B. But it

22

was after frequent contact with the SEA developers and testing that patch
number one and two (SP1/SP2) to version R3B came. This made the
deblocking and blocking successful, i.e. at least version R3B with patch
number two is needed.

If the loading part is performed when deblocking, it failsin the first when
the transmit timer in the link handler time-out the load transmission. The
deblocking then has to be performed by sending the deblock command a
few times. In total the deblocking with loading from SEA takes about 10-
15 minutes.

As acomparison, the deblocking can also be performed with a program
called rpload, the loading with that takes about 10-15 seconds without
any timing problem.

So, the problem with loading from SEA should be solveable, by the
developers, by increasing the load speed.

To start the testing on SEA, the SEA Control Center is started with the
“sea” command in the same shell as that the OSE system daemon and the
link handler is started.

Figure 5.4 SEA Control Center.

To deblock area RP, it isnecessary to turn on the Real Time Simulation
(RTS), under the “Options” menu. This is necessary, because the CP
components are too quick for the RP hardware interface, i.e. the RP will
be timed out and théblocking will fail.

Choose the “Session Prefs” tab, write the path and name of the
configuration file in the “AXE Manager Configuration” field and press
“Apply”. Choose the “Log Information” tab and launch thenp by
pressing the “GO” button.

A typical log is shown below:

SEA Control Center Log File
User: ejorgen

Date: Wed Mar 8 09:07:01 MET 2000
i

7

CHAMS started. (pid: 10393)

Info: SEA is started (pid: 10395)

HTTP server started on port 5000

/ayer/appCore/273c0e38-5787-11d2-bf6a-0800208818ed >Loading
'workingdump.21220 emudump.gz' dump

Allocating memory: DRS=256 MW32, PS=32 MW32, PSCM=512 KW32

Loading RS ...

Loading PS ...

Loading PS cache ...

Loading DS ...

Loading 'workingdump.21220 emudump.gz' dump completed

/' >MPH started on port 38167

/ayer/appCore/273c0e38-5787-11d2-bf6a-0800208818ed
>/layer/simCore/13fa39cc-6031-11d3-827a-08002082b68e
>/layer/simCore/13fa39cc-6031-11d3-827a-08002082b68e
>/layer/appCore/273c0e38-5787-11d2-bf6a-0800208818ed
>/layer/appCore/273c0e38-5787-11d2-bf6a-0800208818ed
>/layer/appCore/273c0e38-5787-11d2-bf6a-0800208818ed >

RPPHW: searpcs_rpbs: No connection with RP! Trying to (re)connect...
searpcs_rpbs: Connection with RP established!

RPPHW: searpcs rpbs: Connected to RPPHW proxy on channel ()

24

Note the two last rows, that shows that the connection server has

established connection both to the RP hardware and the RP proxy within

SEA, i.e. the Connection Server connection is successful.

The next step isto open aWiol console, to be able to send the deblock

and block commands to the CP. This console is opened from the “Tools”
menu.

In Figure 5.5, a view of a successdabl/ock from a Wiol console is

shown. The response of the “exrpp:rp=98;” command is a view of the RP
state. In the first “exrpp:rp=98;” call the RPm&nual blocked (MB), as

stated in thelump, and after theleblock command (blrpe:rp=98;) the RP

is in working (WO) state. If théeblocking fails the RP will bewtomatic
blocked (AB), i.e. the CP wilblock the RP.

25

—|WIOL CAA 139 1109/11 R4T : SEA_CHAM—R8A2A13_21225_SE - | |
Actions =] Stop] Transmit =] Clipsave =) Applications =] Properties..) |_

TRM: LOG:

<exrpp:rp=98;
RP DATA

RP STATE TYPE TWIN STATE DS MAINT.STATE
98 MB RPPS1 IDLE
END

blrpe:rp=98;

EX-A R8A2A13_21225 003A.WO AT-4 TIME 000000 1415 PAGE 1
BLRPE:RP=98;

<

ORDERED

<

TIME OUT

EX-A R8A2A13_21225 003A.WO AT-4 TIME 000000 1420 PAGE 1
DEBLOCKING OF RP

RP RESULT
98 DEBLOCKING PERFORMED

<exrpp:rp=98;
RP DATA
RP STATE TYPE TWIN STATE DS MAINT.STATE

98 WO RPPS1 IDLE
END

LLlel »

exrppirp=all;
blrpe:rp=398;
exrppirp=all;
axrppirp=all;
forws rp=98, ws=sep;
exrppirp=all;

rp=38;

Buffered———-—

LLel »

READY

Figure 5.5 Wiol Console

5.3 Dump rebuilding

The purpose with the dump rebuilding is to change a Software Unit (SU),

a so called Function Change (FC), in the dump (RP). This unit, named
“RPEXR?”, is the OS unit connected to the RP. This chapter describes a
general rebuilding procedure from a RPP perspective.

To start with, the dump to rebuild (R8A2A13_21225 003a.wo.tar.Z) has
to be loaded into SEA. The commands needed are entered in a Wiol

26

console (MML commands) and the Command Field in SEA Control
Center.

SEA simulates one of the CP sides, so first that CP side has to be
configured with following MML commands:

SYATI;
This command is used to start passive blocksin the SB side of CP.

PTSWI,
This command is used to change CP side. The CP side that was SB
will become EX and the CP side that was EX will become SB.

To change one software unit, al the logical connectionsto it have to be
removed. Some units in the RPP have logical connection to so called
Extension Modules (EMs). The EMsin the RPP are numbered 0-3 and
have the purpose to hold the address of the unit. The address is used by
the corresponding block in the CP to recognise the RP unit.

The “RPEXR” unit is not connected to an EM, so the commands bellow
that handles EMs are not used when changing that unit.

FCRWS: RP=rp, WS=SEP;
The command changes the state of the RBpw-ared.
When the state of the RP is changesktarated (parameter SEP),
the RP becomes accessible only terairated SB side of the CP.
In CP-EX the RP is interpreted &locked.
The controlled equipment (EM) i8ocked in CP-EX.

BLRPI: RP=rp;
This command is used whérvcking an RP, in other words the
logical state of the RP is seti@mnually blocked (MB).
All EMs linked to the RP must bi€ocked in CP-EX before the
command can be accepted.

BLEMI: RP=rp, EM=em;
This command is used whérfvcking an EM that is controlled by a
RP.Blocking means that the supervision of the EM is stopped and
the recall of the associated programs in the RP ceases.

EXEME: RP=rp, EM=em;
The command is used in order to remove the definition of an EM.

27

EXRUE: RP=rp, SUID=suid (SUNAME=suname);
Command “EXRUE” is used to delete defined software units in an
RP.
The specified RP must lmanually blocked. Parameter SUID must
be specified if more than one version of the specified software unit
is defined.

When the connections have been removed, the new software unit has to
be loaded into the CP memory. The directory (called IOG directory) path
to the unit has to be defined in tGemmand Field in SEA Control Center

with the following commands:

.cd ~CP (To communicate with the CP in SEA.)
set-iog-directory <IOG directory>

The directory has to have a specific structure, as in Figure 5.6.

<|OG directoy>

L EMRP-fileinfo

EMRP

L COMP
L <unitname 1

L <unit name 2

Figure 5.6 10G directory structure.

The “EMRP-fileinfo” file will have the following contents.
rlength 512

type seq
fclass cmp

28

The “EMRP-fileinfo” file and the “EMRP” directory can be created with
a MML command.

INFII: FILEEEMRP, RLENGTH=512, FCLASS=CMP, TYPE=SEQ;

The “COMP” file consists of the names (SUNAMES) and identities
(SUIDs) of the unit files that are placed in the “EMRP” directory.

As mentioned before, the unit has to be loaded into the CP memory. This
iIs made with the following MML command.

LAEUL:SUID=suid (ALL);

If “ALL" is specified, all software units in the “EMRP” directory are
loaded.

When the new software unit is loaded, the logical connections have to be
restored.

EXRUI: RP=rp, SUID=suid (SUNAME=suname);
Command EXRUI is used when defining a specified SU for an RP.
Parameter SUID must always be used if more than one version of
the SU is defined in the CP. The specified RP musideawally
blocked.

EXEMI: SUID=suid (SUNAME=suname), EQM=egm, RP=rp, EM=em;
This command is used for defining an EM and for linking
equipment to a software unit.

The command may be given to béthcked anddeblocked RPS.
Parameter SUID must always be used if more than one version of
the software unit is defined in CP.

The RP, which is specified in the parameter RP, is set as the home
address for the EM.

The EM is set to the stateanually blocked.

BLEME: RP=rp, EM=em,;
This command is used whéebblocking an EM that is controlled
by a RP.
Deblocking means that the supervision of the EM is started and the
recall of the associated programs in the RP is activated.

When all the connections are made,dh@p is saved with the following
command in th&€ommand Field in SEA Control Center.

29

save-dump <dump name>

The dump is placed in the “IOG” directory.

30

6 GS4M implementation and verification

As mentioned before the GS4M is replacing the Musse board in the

testrigg. The GSAM used is amodified variant, see chapter 4.4.

There where three main goals in the evaluation of the GS4M and they

where:

* Investigate if the GUI is competent, otherwise which new demands are
needed.

* Integration of the GS4M hardware in the testrigg.

* Veify that DSPjoint test is possible with the GS4M.

6.1 GS4M graphical user interface

After inquiry by the developers (UAB) and search for the documentation
that should belong to the GUI, | had to give up - thereisno
documentation on the GUI. So, the primary demand is that documentation
has to be created. However, some parts of the GUI were described in
another document, [21], written about another test case. With help from
that, some work could be done with the GUI. But only the parts that were
necessary to go on with the implementation of the GS4M are mentioned.

6.1.1Investigation

Make connections

Figure 6.1 shows the main window of the GUI and there are only afew

parts that will be used.

The cross squaresin field (2) have to be marked to tell the switch that an
external GDM magazine is connected.

Field (1) iswhere the internal connections through the switch are

configured. The “Source/Destination” rows are where the choice of which
EM (DL3), Link (DL2) and TimeSlot to connect from/to is made. More
about the external EM/Link (DL3/DL2) front-connections in chapter 6.2.
In this case only one timeslot in each direction can be selected at a time,
I.e. one timeslot to another. To make a connection in both directions, the
connection has to be made in two steps. An example is shown below.

Example 6.1:

The x/x/x stands for EM/Link/TimeSlot.
Connect 0/1/2 with 3/4/5 in both directions.

Step 1: Fill out source field: EM=0, Link=1, TimeSlot=2.
Fill out destination field: EM=3, Link=4, TimeSlot=5.

31

Click the Connect button.

Step 2: Fill out sourcefield: EM=3, Link=4, TimeSlot=5.
Fill out destination field: EM=0, Link=1, TimeSlot=2.
Click the Connect button.

1

To reset atwo-way connection, the reset also has to be done in two steps.
An example is shown below.

Example 6.2:

The x/x/x stands for EM/Link/TimeSlot.

Step 1: Reset link 0/1/2.
Fill out sourcefield: EM=0, Link=1, TimeSlot=2.
Fill out destination field: EM=0, Link=1, TimeSlot=2.
Click the Connect button.

Step 2: Reset link 3/4/5.
Fill out source field: EM=3, Link=4, TimeSlot=5.
Fill out destination field: EM=3, Link=4, TimeSlot=5.
Click the Connect button.

i

To reset all the connections, the “Init All” button is selected.

32

', GS4M 2.00

i

r

ﬁ

i

o
=

Figure 6.1 GS4M graphical user interface — main window.

In Figure 6.2 the “Wide Band” cross square is marked and that makes it
possible to connect two ranges of timeslots to each other at a time. In this
case, a connection/disconnection in both directions is done in the same
way as for a single timeslot, but with a range of timeslots.

< IR A

Figure 6.2 GS4M graphical user interface —wide band.

Logging

All the connections are logged in two *.log files, “current.log” and
“previous.log”. These files are just logging the connections made in the
program and are not connected to the hardware. This means that all the
information about the connections in the hardware relies on these files.
This could be a problem.

As an example, the files could be damaged if there are problems with the
host that the program runs on and that means that all the information
could be lost.

Another problem is that old information in the log files is not updated, i.e.
if one connection on a timeslot is changed the old information will remain
in the log. Admittedly, all the necessary information is available, but
when the files grows the information becomes immense. This could lead
to problems if there are several users of the system, and that is likely.
Thus, the log information should be based on the hardware directly and a
graphical representation should be present because of the problem to get
an overview of the connections.

Card configuration and alarms

When the Configuration button in the main window is selected, the
Configuration window appears, Figure 6.3. This window shows the cards
that are installed in the GS4M magazine and alarms on the different front-
connectors. In this case, it is the marked front-connectors (field (1-3)) that
are connected to other front-connectors, in the same or other magazine.

An alarm on a front-connector is indicated in red, green means no alarms.
In Figure 6.3 are the field (1) connectors indicating green, the rest are red,
except for the connectors in field (3) that have no colour indication. The
“EMB C” (field (2)) alarm is ok, it is just indicating that the CLB card
installation is not what is expected, only one CLB card instead of three,

as in the original GS4M magazine.

Figure 6.3 GS4M graphical user interface — configuration window

If the “EM 0” in field (1) is selected an “Alarms” window will appear,
Figure 6.4. As can be seen, the “EM 0” front-connector is not indicating
any alarms but the “Alarms” window shows an alarm on bit “CL_L".
This alarm is ok, it is just indicating that the clock configuration is not
what is expected. But the indication bug should be corrected.

”__ Alarms =3

Figure 6.4 GS4M graphical user interface — alarms in EM.

6.2 Hardware integration

6.2.1External connections

In Figure 6.5 the external cable connections of GS4M are shown, the
internal cable connections are shown in Figure 6.6.

The GS4M GUI is running on a PC with Microsoft Windows 95/98. The
communication between the GUI and thgrigg is performed via

internal PC cards (PCEM).

35

The EMBA cards are the same as the RPs mentioned in chapter 4.4.
The TSAB card has four DL 3 connections (only one connected) to
communicate with the RPP, but the communication is performed viaa
DLMUX (DLHB) that splitsthe DL3 link into sixteen DL 2 links and
distributes them to the back plane.

In the figure, the EPSB card that connects the back plane on the RPP
magazine with the Ethernet can aso be seen.

PC

Win 95/98
GS4M GUI

>mZm
] mrn-
—

o

[

w
>OIM —
wro 1
—1 WO oT»m
1 wawnd
1 wawnd

Figure 6.5 External connections of GS4M.

6.2.2Internal connections

As can be seen in Figure 6.6 only the leftmost EMBA card is powered

with —48V. That card distributes the power to the back plane, i.e. to all
the other cards in the magazine.

The clock from the clock card (CLB) is distributed to both the SPDBs.
The GS4M magazine installed in tlerrigg is only equipped with one

clock board (CLB) because the reliability demands are not as rigorous as
in a real AXE exchange.

36

As mentioned in chapter 4.4, the TSM-RP can handle two T$4Bs, but if
one of the RPs fails the other RP will take control of all the four T$4Bs.
In the current rack the leftmost EMBA (TSM-RP) isthe only TSM-
EMBA, thusthat EMBA has control of all four TS4Bs.

-48V toPC toRPP to PC
| /

DL3

O Uowm

I:IEI\:szrn !I:I

I:II:II:II:I\mr—O/II:IEI

S

—H 0 >w=m R-—

//0ong ws0- 00O

oou
Oo0oo0Qd wsrnd FI:I
\ 0000 mbcn—i/![l

[[boom w=0- OO
/I EII:I* \EUU'UU)

Figure 6.6 Internal connections of GS4M.

6.3 DSP joint test

There are afew programs needed to make a DSP joint test, and they are
the slotlogtool, Distributed Debug Server (DDS) and GSAM programs.
The dlotlogtool and DDS are described later in this chapter.

6.3.1Description

The DSP joint test is performed to verify that the synchronisation, when a
connection is estalished, on the GSL interface between the PCU (BSC)
and the BTS node is working properly.

Figure 6.7 is an overview of the logical connections needed to perform

the joint test. The sending DSP isnamed DSP 3 and the receiving DSPis

named DSP 2.

The test case is that one DSP (DSP 3) in the RPP “simulates” the BTS
node and sends synchronisation frames (a special sets of data, not
explained further, see appendix 11.3) through the GS4M and back to
another DSP (DSP 2). In the receiving DSP the GSL interface has to be
activated. The receiving DSP tries to synchronise on the received frames

37

and if the synchronisation is successful, the DSP responds back to the
sender on the same channel, otherwise no response is sent.

/— Sun-UNIX —\ . RPP i

(oo o
Ethernet

|
- / 2

Cho
PC

GS4M
GUI

Figure 6.7 DSP joint test - logical connections.

Slotlogtool

The dlotlogtool program runs on a Unix workstation and communicates

with the DSP through the Ethernet. To run the program the “osesysd”
daemon and the link handler “Inhethc” has to be running, apart from that
the RPP has to héblocked.

The program can both send scripts and log (to shell or file) on one
channel. It uses DSP number (0-7), DL2 link number (0-1), channel
number (0-127) and a script name as arguments.

If the script name is not added the program will only log on the specified
channel, DL2 and DSP. Otherwise it both sends the script and logs on
that channel.

Distributed Debug Server

The DDS program runs on a Unix workstation and communicates with
the RPP through the Ethernet. To run the program the “osesysd” daemon
and the link handler “Inhethc” have to be running.

38

The DDS is used to “look in the system” on process level, mainly signal
tracing and process characteristics.

In the DSP joint test, the DDS is used to activate the GSL interface in the
DSP that will be the receiver, the RPP has tdddéocked before

activation is possible.

The second use of DDS is to trace the signals between the involved
blocks in the DSP, ifiwhen the DSP tries to and succeeds to synchronise
on the incoming frames.

6.3.2Verification

The verification is done in four major steps.

1. Start the daemon (osesysd) and the link handler (Inhethc) and also
deblock the RPP.

2. Activate the GSL interface in a DSP. (see below)

3. Configure the GS4M. (see below)

4. Send synchronisation frames and analyse the result. (see below)

Step 3 and 4 are done one time for each test case mentioned below.

GSL activation

The activation is actually done at a channel level and then a GSL
manager inside the RPP connects that channel to a specific DSP
according to a load sharing algorithm. The activation is done from the
DDS program by sending a signal named “RPRSTARTGSL” to a process
named “RGRLCR”. The signal contains, among other data, which
channel to activate. The channels 4 and 132 were activated in this case
and that means that the GSL manager selected DSP 2 and DSP 4
respectively. The information about which DSP is selected, can be traced
in the DDS program. A DDS trace log can be seen in appendix 11.5.

GS4M configuration

One DSP can handle 256 channels divided on two DL2 links, i.e.
channels 0 to 127 on DL2 link 0 and channels 128 to 255 on DL2 link 1.
In the GS4M the timeslots are connected in groups of four channels, i.e.
timeslot 0 in GS4M means channels 0 to 3. So, connecting timeslots 0
and 1 in GS4M means connecting channels 0 and 4 and so on.

In Table 6.1 the logical connections (toward a part of the RPP magazine)
between GS4M DL2 links and RPP DL2 links can be seen. In the DSP
the DL2 links are numbered 0/1 and from GS4Ms point of view the DL2
links are numbered after board position. Thus, for RPP 0 for example,
DL2 0/1 are the same as DL2 1/2 from GS4Ms point of view.

39

GS4M RPP magazine

DL3 (EM) | DL2 (Link) DL2 Board Board
Position Type
- - - For left EMB
- - - To theright DLHB

of EMB
0-15 0 - 0 EPSB
0-15 1/2 0/1 1/2 RPPO
0-15 3/4 0/1 34 RPP 1

Table 6.1 DL?2 links between GS4M and RPP magazines.

The test connections through the GS4M were configured in 4x4 different

ways. To test the connection through all the TS4B boards, the

configurations below are done for DL3 (EM) front-connector O, 1, 8 and

9.

The test cases were for DSP sender and receiver asfollows:

* Same RPP (1) and same DL 2, to test both send and receive
connections toward the first position on one RPP.

» Same RPP (1) and same DL 2, to test both send and receive
connections toward the second position on one RPP.

« Same RPP (1) and different DL 2, to test connections toward both
positions on the same RPP at the same time.

» Different RPP and different DL 2, to test connections between two
different RPPs.

The DSPs and channels are always different if the RPP isthe same. In

Table 6.2 the test case configuration can be seen. All the connectionsin

the G$4M are done in both directions.

GS4M RPP magazine
Source Destination Sender Receiver
(GSL activated

Link | TS | Link | TS | RPP | DSP | DL2 | Ch | RPP | DSP | DL2 | Ch

3 0 3 1 1 3 0 0 1 2 0 4

4 0 4 1 1 3 1 |128 1 4 1 132

3 0 4 1 1 3 0 0 1 4 1 132

1 0 4 1 0 3 0 0 1 4 1 132

Table 6.2 DSP joint test case configuration.

Result

When the receiving DSP is synchronising on an incoming frame set, a
signal trace is performed in the DDS. From the trace log it can be seen

40

that the synchronisation was successful. The trace log looks the same for
all the test cases. A signal trace log can be seen in appendix 11.7.

The dotlogtool islogging on achannel, the logging is on raw data, i.e.

almost impossible to construe. Therefor a tool called “decoder” is used to
interpret the data. In appendix 11.4 that interpreted slotlogtool response
log can be seen. That log looks the same for all test cases and the
response back to the sending DSP was correct.

Thus, the communication in both directions through the GS4M is correct,
i.e. the DSP joint test was successful.

41

7 TSS2000

7.1 General

To enableintegration of the TSS2000, the hybrid test environment has to
have asignalling interface toward it, Signalling System No 7 and LAPD.
In the real GSM/GPRS network the signalling in the BSC nodeis
performed through some hardware parts that are not implemented in the
testrigg. Therefore the signalling connections have to be made between
TSS2000 and the simulated part of the hybrid test environment, SEA.
SEA should therefore be able to handle the Signalling System No 7 and
LAPD protocols.

7.2 TSS2000 toward SEA

SS7 isasignalling link on the so-called A interface, i.e. toward the MSC.
Thissignalling is needed even when only GPRS traffic is handled.
LAPD isasignaling link on the Abisinterface, i.e. toward the BTS node.

The signalling from TSS2000 ST is performed through LAPD and SS7
boards, but the hardware in the festrigg is not capable of handling this.
The aternative remaining to achieve the desired connection isto have
TSS2000 SFT.

Thereis already work going on with the connections between SEA and
TSS2000 SFT and is not a subject for this thesiswork. Still, abrief
description follows below.

The LAPD interface in SEA is managed by an emulated RPD or RPG
(RPemu), see Figure 7.1. The RPD and RPG are RPs that are used for
different tasks in the AXE, they are not described further in the report.
The RPemu is created when launching the dump in the SEA
Configuration Wizard.

The LAPD interface in the TSS2000 SFT is managed by the RPD
adapter.

The glue between the two interfaces is a Connection Server (CS).

The LAPD signalling is, when thisiswritten, up and running.

SS7 is mapped directly to the CP through the Message Protocol Handler

(MPH) in SEA. MPH isan interface in SEA that allows external toolsto
directly access SEA components.

42

The C7 adapter in TSS2000 SFT performs the SS7 connection toward the
CP. The tests performed on the SS7 connection (at the time of writing)
indicates that it functions correctly.

SEA
CP
|
MPH RPemu
|
Ccs
Ss7
LAPD

C7 TSS2000 SFT RPD
adapter adapter

Figure 7.1 T7SS2000 SFT toward SEA connection — overview.

More information about the signalling interface in TSS2000 can be found
in[20].

7.3 TSS2000 toward GS4M

In the connection between TSS2000 and GS4M it is the hardware based
TSS2000 that is needed, i.e. TSS2000 ST. The TSS2000 ST has an
optional GPRS system. This system has E1 interfaces toward the testrigg
so the connections have to be made through ETC boards.

Thus, the connections toward GS4M have to be made via the present
DLHB board and two ETC boards that can be mounted in the RPP
magazine, see Figure 7.2.

43

GSAM

DL3

DLHB

DL2

RPP magazine

ETC

ETC

El

TSS 2000

Figure 7.2 TSS2000 connections toward GS4M.

8 Result and reflections

The result of this thesis work is a “new” hybrid test environment that has
some extensions from the “old” hybrid test environment. An overview of
the “new” hybrid test environment can be seen in Figure 8.1. The
connections with RPPsim, Adapter and TSS2000 SFT is not, as
mentioned before, included in this thesis work. Others have made these
connections.

GS4M TSS2000 SET

Figure 8.1 Overview of the “new” hybrid test environment.

The SEA integration is one extension from the “old” environment that
makes it possible to control the RPPs from a CP. The connection between
SEA and the RPPs was successful, but the low performance in the load
procedure from SEA to RPP can set a limit of the use of it.

Another extension is the GS4M. With Musse connected to the RPP
magazine, only one RPP at a time could reach the switching part. The
GS4M makes it possible to connect all the RPPs to the switching part
simultaneously. That increases the availability of the hybrid test
environment so that more users can use it. l.e. it is the number of RPPs
installed that sets the limit of number of users, not the switch. As
mentioned before, the existimgtrigg can hold up to 7 RPPs

The capacity of GS4M makes it also possible to extent the hybrid test
environment with up to 16 RPP magazines. That decreases the cost
iffwhen more RPPs are needed.

If, in a future, a subrate switch is integrated in the GS4M, the extension
possibility decreases by 2 RPP magazines, because the subrate switch
occupies 2 DL3 front-connectors.

45

The problems that occurred with GSAM are related to the GUI, with the

lack of documentation, the alarm indication bug and the weak connection
between the log files and the hardware.

Another “problem” with the GS4M is that the hardware is controlled

from a PC with Windows 98, which is not allowed to be connected to the
Ericsson Ethernet. This means that the flexibility in the use of the hybrid
test environment decreases, due to that the users can have different
locations while the control of GS4M have to be made from the PC that is
connected to thestrigg.

But, if the GS4M could be connected to and controlled by the CP (SEA),
like it is in a real AXE, these problems would be solved and the same
applies to the GUI problems.

Another solution on the location problem could be to develop a UNIX
based GUI if the PCEM cards can be used or if corresponding cards are
developed for UNIX workstations.

The problems that occurred with the GUI should be solved by the GS4M
developers.

With TSS2000 a new problem has occurred. The signalling connection
between TSS2000 and SEA demands the SFT variant and the TSS2000 to
GS4M connection demands the ST variant. So, with these demands, the
hybrid test environment should be like in Figure 8.2.

GS4M TSS2000 ST TSS2000 SFT

Figure 8.2 Overview of the “new” hybrid test environment with TSS2000.

The SEA to TSS2000 SFT connection is already going on in another
location inside Ericsson Radio, so this does not have to be investigated
further.

46

Since the TSS2000 ST is not available at the time of writing, the
connection between GS4M and TSS2000 ST remains to be investigated.
This should not meet with any fundamental technical problems, since
both sides have standard interfaces.

The great challenge in the TSS2000 implementation is the connection
between the two different versions, because thisis anew type of
connection that, apparently, has not been done before. This has not been
investigated in this thesiswork. Thus, it remains to be investigated how
such a connection would be made.

Thewhole cost for the testrigg is about 600.000 SEK were the TSS2000
ST stands for about 500.000 SEK, but to make it possible to test the RP
software on a higher protocol level the TSS2000 has to be implemented
in the testrigg. It can be said that the TSS2000 will make a big difference
in how many testing hours that can be moved from the AXE target
environment to the hybrid test environment.

As areference can be said that about 10.000 man-hours were spent for
Function Test in the latest project and the cost per hour for the AXE
target environment is 1.000 SEK.

47

9 Abbreviations

AB Automatic Blocked

Abis Transmission interface BSC-BTS

API Application Program Interface

APT AXE Application system

APZ AXE Control System

AXE Ericssons total exchange

BSC Base Station Controller

BSS Base Station System (BSC and BTYS)

BSSGP BSS GPRS Protocol

BTS Base Transceiver Station

C7 Signalling System Number 7

CH Channel

CLB Clock Board

CLM Clock Module

COM Component Object Model

CP Central Processor

CPS Central processor subsystem

CPU Central processor unit

CS Connection Server

DDS Distributed Debug Server

DL Digital link

DL2 Digital link version 2 (2 Mbit/s)

DL2B Digital link version 2 Backplane

DL3 Digital link version 3 (16 DL2s)

DLHB Digital Link Half Board
(convertsone DL3t0 16 DL2)

DLMUX Digital Link Multiplexor

DSP Digital Signal Processor

DT Data Transcript

E1l PCM link for the European standard
(2Mbit/s, 32 time slots)

EM Extension module

EMB Extension module bus

EPSB Ethernet packet switch board

ETC Exchange Terminal Circuit

EX Executive, working state in CP

FC Function Change

FT Function Test

Gb Transmission interface BSC-SGSN

GDDM Generic Device and Datacom Magazine

48

GDDM-H
GDM
GGSN
GPH
GPRS
GS
GSAM
GSL
GSM
GSS
GUI
HW
ICB
KMUP
LAPD
LLC
MAC
MAS
MB
MML
MPH
MS
MSC
MUP
OS

PCEM
PCI
PCM
PCU
PDCH

RCLB
RLC
RP
RP4
RPB
RPBH
RPBH-S
RPB-S
RPCS
RPP
RPX

GDDM -Halfheight

Generic Device Magazine

Gateway GPRS Support Node

GPRS Packet Handler

General Packet Radio Service

Group Switch

Group Switch 4k

GPRS Signalling Link

Global System for Mobile Communication

Group Switching Subsystem

Graphical User Interface

Hardware

Incoming Clock Board

1024 MUP

Link Access Procedure for the D-channel
Logical Link Control

Medium Access Control
Maintenance subsystem

Manual Blocked

Man machine language

Message Protocol Handler

Mobile Station

Mobile Services Switching Centre
Multiple Position in the group switch

Operating System

Personal Computer

PC mounted GS4M control card
Peripheral component interconnect
Pulse Code Modulation

Packet Control Unit

Packet Data Channel

Packet Switched

Reference Clock Board

Radio Link Control

Regional Processor

Regional Processor version 4
Regional Processor Bus

RPB Handler

RPB Handler — Serial bus
Regional Processor Bus - Serial
RP Connection Server

Regional Processor with PCI interface
Regional Processor Cross Connect

49

SB

SE

SEA

SFT
SGSN
SNT
SPDB
SPM
SRS
SRSM
SS7

ST

SU

SUID
SUNAME
TSAB
TSM
TSM-RP
TSS

WO

50

Standby, working statein CP
Separated, working state in CP
Simulator Environment Architecture
Simulated Function Test

Serving GPRS Support Node
Switching Network Terminal

Space Switch Diagonal Board
Space Switch Module

Subrate Switch

Subrate Switch Module

Signalling System No. 7

System Test

Software Unit

Software Unit Identity

Software Unit Name

Time Switch Board with 4 TSM Functions
Time Switch Module

TSM controlling RP

Telecom Simulation Systems
Working, working state in CP

10 References

10.1Internal Ericsson

1. GS4M switch HW functional unit
1551-COA 213 108 Uen

2. GPRS design guidelines
BD/159 41-4/FCP 103 1229/2 Uen

3. DSP manager in RPP
29/15519-ANZ 212 08

4. BSC Hardware Dimensioning Document
1555-AXE 10507 Uen B

5. Subsystem GSS
1551-ANT 213 17/3Uen A

6. GSL handling
1551-CAA 204 1063

7. SYATI: System Function, Application System Start, Initiate
7/190 82-CNZ 214 145 Uen B

8. PTSWI: Processor Test, Switch CP Sides, Initiate
28/190 82-CNZ 214 188 Uen A

9. FCRWS: Function Change RP Working State, Set
3/190 82-CNZ 212 225 Uen A

10.BLRPI: Blocking Functions RP, Initiate
2/190 82-CNZ 212 199 Uen A

11.BLEMI: Blocking Functions, Blocking of EM, Initiate
3/190 82-CNZ 212 318 Uen A

12. EXEME: Exchange Data EM, End
1/190 82-CNZ 212 080 Uen B

13.EXRUE: Exchange Data, RP Software Unit, End
3/190 82-CNZ 212 245 Uen A

14.INFII: 10 Subsystem Functions File Administration, Initiate
6/190 82-CNZ 213 1010 Uen G

15.LAEUL: Loading Administration, Regional Software Unit, Load
2/190 82-CNZ 212 278 Uen A

16. EXRUI: Exchange Data, RP Software Unit, Initiate
2/190 82-CNZ 212 245 Uen A

17.EXEMI: Exchange Data Function, EM Initiate
1/190 82-CNZ 212 338 Uen A

18. BLEME.: Blocking Functions, Blocking of EM, End
2/190 82-CNZ 212 269 Uen A

19.CCITT7, Common Channel Signalling Subsystem,
CCS-7 1551-ANT 218 14/1Uen C

20.TSS 2000, Network Traffic Interface
5/155 19-CRL 113 112 Uen

21.USER INSTRUCTION FOR GS4M-GROUP SWITCH, IN RIVA
1/19817-162/FCPW 101 19 Uen PA4

22, http.//infotech.ericsson.se/tsp/products/sea/docs/Online Help/latest/hel
p.html (Acc 00-06-20)

10.2External

23.Telecommunications, Telephone Networks 1 (1986),
Ericsson, Televerket and Studentlitteratur
ISBN 91-44-24521-1

24 Walke, Bernhard (2000) Mobile Radio Networks, Networking and

Protocols”, Chichester, England: John Wiley & Sons Ltd
ISBN 0-471-97595-8

52

11 Appendices

11.1Wizard created configuration file

Ivar/tmp/eorgen/config/configR3B_adl3 sim.axe

H - e

Thisisaconfiguration file for SEA.

It describes which components that should be created and how they
should

be connected inbetween themselves to simulate an AXE-10

To run SEA on this configuration file give the following command:
sea -config /var/tmp/gorgen/config/configR3B_adl3 sim.axe

Thisfile has been automatically generated by SEA Configuration
Wizard R1B
Executed by gjorgen@y6u643 Thu Apr 13 11:33:45 MET DST 2000

Creating the CP...

create CP21220.CP21220.1 CP

Creating RPBHSs...

create RPBH.RPBHP.1 RPBH_O
create RPBH.RPBHS.1 RPBH_1
create RPBH.RPBHP.1 RPBH_2
create RPBH.RPBHS.1 RPBH_3
Creating RPs...

create RPSIM.RPV.1 RP_1
create RPSIM.RPAL1G.1 RP_32
create RPSIM.RPAL1G.1 RP_33
create RPSIM.RP4AL1G.1 RP_34
create RPSIM.RPAL1G.1 RP_35
create RPSIM.RPAL1G.1 RP_36
create RPSIM.RP4AL1G.1 RP_37
create RPSIM.RPAL1G.1 RP_38
create RPSIM.RPAL1G.1 RP_39
create RPSIM.RPAL1A.1 RP_40
create RPSIM.RPAL1A.1 RP_41

53

create RPSIM.RP4L1A.1
create RPSIM.RP4L1A.1
create RPSIM.RP4L1A.1
create RPSIM.RP4L1A.1
create RPSIM.RP4S1A.1
create RPSIM.RP4S1A.1
create RPSIM.RP4S1A.1
create RPSIM.RP4S1A.1
create RPSIM.RPV.1
create RPSIM.RPG2A.1
create RPSIM.RPG2A.1
create RPSIM.RPG2A.1
create RPSIM.RPG2A.1
create RPSIM.RP4S1A.1
create RPSIM.RP4S1A.1
create RPSIM.RPG2A.1
create RPSIM.RPG2A.1
create RPSIM.RPG2A.1
create RPSIM.RPG2A.1
create RPSIM.RP4S1A.1
create RPSIM.RP4S1A.1
create RPSIM.RPPS1.1
create RPSIM.RPPS1.1

Creating STRs...

RP 42
RP 43
RP 44
RP 45
RP 46
RP 47
RP 48
RP 49
RP 4

RP_50
RP 51
RP 52
RP 53
RP 54
RP 55
RP 56
RP 57
RP 58
RP 59
RP_96
RP 97
RP 98
RP_99

create STRSIM.STR2C.1
create STRSIM.STR2C.1

Creating RP software components...

EIA_STR A
E1A_STR B

IT

create GSS.GSS128.2
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1

create GSS.TSMR128.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1

create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2

54

GSS

RP 32 0
RP 32 1
RP 32 28
RP 32 2
RP 32 30
RP 32 31
RP 32 3
RP 32 4
RP 32 5
RP 32 6
RP 32 7

create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1

RP 33 28
RP 33 30
RP 33 31
RP 34 0

RP 34
RP .
RP .
RP .

(o]

RRRLRLE

PIVRPY)
T,0

pu)
2
S
N

Y]
T
®
)]

Ry
T
®
o

Py
2
®
\'

pY)
'U
oo

RP 35 .
RP 3
RP 36 0
RP 36 1
RP _36_28
RP 36 2
RP 36 30
RP 36 31
RP 36 3
RP 36 4
RP 36 5
RP 36 6
RP 36 7
RP 37 28
RP 37 30
RP 37 31
RP 38 0
RP 38 1
RP 38 28
RP 38 2
RP 38 30
RP 38 31
RP 38 3
RP 38 4
RP 38 5
RP 38 6
RP 38 7
RP 39 28

(J'IU'I(J'II
0000[\)
= O

55

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.CLTR.2

create GSS.CLTR.2

create RPCMSIM.RPMBHR.1
create GSS.CLTR.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.CLTR.2

create GSS.CLTR.2

create RPCMSIM.RPMBHR.1
create GSS.CLTR.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create SS/ST.C7ST2CR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.CSLSNTR.1
create RPCMSIM.RPFDR.1

56

RP 39 30
RP 39 31
RP 40 28
RP 40 30
RP 40 31
RP 41 28
RP 41 30
RP 41 31
RP 42 28
RP 42 30
RP 42 31
RP 43 28
RP 43 30
RP 43 31
RP 44 0
RP 44 1
RP 44 28
RP 44 2
RP 44 30
RP 44 31
RP 45 0
RP 45 1
RP 45 28
RP 45 2
RP 45 30
RP 45 31
RP 46 28
RP 46 30
RP 46 31
RP 47 28
RP 47 30
RP 47 31
RP 48 28
RP 48 30
RP 48 31
RP 49 28
RP 49 30
RP 49 31
C7ST2C-08&-3
RP 50 31
RP 51 31
RP 53 0
RP 53 19

create CSLM7R.CSLM7R.1 RP_ 53 1
create RPCMSIM.RPMBHR.1 RP_54 28
create RPCMSIM.RPFDR.1 RP_54 30
create RPCMSIM.RPMMR.1 RP_54 31
create RPCMSIM.RPMBHR.1 RP_55 28
create RPCMSIM.RPFDR.1 RP_55 30
create RPCMSIM.RPMMR.1 RP_55 31
create RPCMSIM.RPFDR.1 RP_56 31
create RPCMSIM.RPFDR.1 RP 57 31
create RPCMSIM.RPFDR.1 RP_58 31
create RPCMSIM.RPFDR.1 RP_59 31
create RPCMSIM.RPMBHR.1 RP_96 28
create RPCMSIM.RPFDR.1 RP_96_30
create RPCMSIM.RPMMR.1 RP_96 31
create RPCMSIM.RPMBHR.1 RP_97 28
create RPCMSIM.RPFDR.1 RP_97_30
create RPCMSIM.RPMMR.1 RP_97 31
create RPCMSIM.RPIFDR.1 RP_98 29
create RPCMSIM.RPFDR.1 RP_98 31
create RPCMSIM.RPIFDR.1 RP_99 29
create RPCMSIM.RPFDR.1 RP_99 31
Creating EMRPs...

create EMRPSIM.EMRP3.1 E1A_EMRP_O
create EMRPSIM.EMRPD1.1 E1A_EMRP_8

Creating EMRP Software...

IT

create EMRPCMSIM.EMGFDR.1
creste EMRPCMSIM.EMGFDR.1

Connecting RPBHs to the CP...

E1A_EMRP 0 EMGFDR
E1IA_EMRP 8 EMGFDR

IT

connect RPBH_0O CP

IRphbServer 0
connect RPBH_1 CP IRphbServer 1
connect RPBH_2 CP IRphbServer 2
connect RPBH_3 CP IRphbServer 3
Connecting RPs to their RPBHSs...
connect RP_1 RPBH 0 IRpbServer 1
connect RP_32 RPBH_1 IRpbSServer 32

57

connect RP_33 RPBH_1 IRpbSServer 33
connect RP_34 RPBH_1 IRpbSServer 34
connect RP_35 RPBH_1 IRpbSServer 35
connect RP_36 RPBH_1 IRpbSServer 36
connect RP_37 RPBH_1 IRpbSServer 37
connect RP_38 RPBH_1 IRpbSServer 38
connect RP_39 RPBH_1 IRpbSServer 39
connect RP_4 RPBH_O IRpbServer 4
connect RP_40 RPBH_1 IRpbSServer 40
connect RP_41 RPBH_1 IRpbSServer 41
connect RP_42 RPBH_1 IRpbSServer 42
connect RP_43 RPBH_1 IRpbSServer 43
connect RP_44 RPBH_1 IRpbSServer 44
connect RP_45 RPBH_1 IRpbSServer 45
connect RP_46 RPBH_1 IRpbSServer 46
connect RP_47 RPBH_1 IRpbSServer 47
connect RP_48 RPBH_1 IRpbSServer 48
connect RP_49 RPBH_1 IRpbSServer 49
connect RP_50 RPBH_1 IRpbSServer 50
connect RP_51 RPBH_1 IRpbSServer 51
connect RP_52 RPBH_1 IRpbSServer 52
connect RP_53 RPBH_1 IRpbSServer 53
connect RP_54 RPBH_1 IRpbSServer 54
connect RP_55 RPBH_1 IRpbSServer 55
connect RP_56 RPBH_1 IRpbSServer 56
connect RP_57 RPBH_1 IRpbSServer 57
connect RP_58 RPBH_1 IRpbSServer 58
connect RP_59 RPBH 1 IRpbSServer 59
connect RP_96 RPBH 3 IRpbSServer 96
connect RP_97 RPBH_3 IRpbSServer 97
connect RP_98 RPBH 3 IRpbSServer 98
connect RP_99 RPBH 3 IRpbSServer 99
Connecting RP software components to their RP...

connect RP_32 0 GSS IGSS TSM-0
connect RP_32 0 RP_32 IRPCmServer {}
connect RP_32 1 GSS IGSS TSM-1
connect RP_32 1 RP_32 IRpCmServer {}
connect RP_32 2 GSS IGSS TSM-2
connect RP_32 2 RP_32 IRPCmServer {}
connect RP_32 28 RP 32 IRPCmServer 28

58

connect RP_32_3
connect RP_32_3
connect RP_32 30
connect RP_32 31
connect RP_32 4
connect RP_32 4
connect RP_32 5
connect RP_32 5
connect RP_32 6
connect RP_32_6
connect RP_32 7
connect RP_32 7
connect RP_33 28
connect RP_33_30
connect RP_33 31
connect RP_34 0
connect RP_34 0
connect RP_34 1
connect RP_34 1
connect RP_34 2
connect RP_34 2
connect RP

connect RP

connect RP

connect RP

connect RP_
connect RP._.
connect RP

connect RP _.
connect RP_.
connect RP.

connect RP_34 6
connect RP_34 7
connect RP 34 7
connect RP_35 28
connect RP_35 30
connect RP_35 31
connect RP_36 0
connect RP_36 0
connect RP_36 1
connect RP 36 1
connect RP_36 2

connect RP_36 2

®

8

RRRREY
~ O

S

4

R

2
3
3
3
5
6

'3
4
5

RE

GSS
RP 32
RP 32
RP 32
GSS
RP 32
GSS
RP 32
GSS
RP 32
GSS
RP 32
RP 33
RP 33
RP 33
GSS
RP_34
GSS
RP 34
GSS
RP 34
RP 34
GSS
RP 34
RP 34
RP 34
GSS
RP 34
GSS
RP 34
GSS
RP 34
GSS
RP 34
RP 35
RP 35
RP 35
GSS
RP 36
GSS
RP 36
GSS
RP 36

IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRPCmMServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmMServer
IRpPCmServer
IRPCmServer
IRPCmMServer
IGSS
IRpPCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IRPCmServer
IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer
IRpCmServer
IRPCmServer
IRpCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer

TSM-3
{}

30

31
TSM-4
{}
TSM-5
{}
TSM-6
{}
TSM-7
{}

28

30

31
TSM-8
{}
TSM-9
{}
TSM-10
{}

28
TSM-11
{}

30

31
TSM-12

{}
TSM-13

{}
TSM-14

{}
TSM-15

{}
28
30
31
TSM-16

{}
TSM-17

{}
TSM-18

{}

59

connect RP_36_28
connect RP_36_3
connect RP_36 3
connect RP_36_30
connect RP_36_31
connect RP_36 4
connect RP_36 4
connect RP_36 5
connect RP_36 5
connect RP_36_6
connect RP_36_6
connect RP_36 7
connect RP_36_7
connect RP_37_28
connect RP_37_30
connect RP_37_31
connect RP_38 0
connect RP_38 0
connect RP_38 1
connect RP_38 1
connect RP_38 2
connect RP_38 2
connect RP_38 28
connect RP_38 3
connect RP_38 3
connect RP_38 30
connect RP_38 31
connect RP_38 4
connect RP_38 4
connect RP_38 5
connect RP_38 5
connect RP_38 6
connect RP_38 6
connect RP_38 7
connect RP_38 7
connect RP_39 28
connect RP_39 30
connect RP_39 31
connect RP_40 28
connect RP_40 30
connect RP_40 31
connect RP_41 28
connect RP_41 30

60

RP 36
GSS
RP 36
RP 36
RP 36
GSS
RP 36
GSS
RP 36
GSS
RP 36
GSS
RP 36
RP 37
RP 37
RP 37
GSS
RP 38
GSS
RP 38
GSS
RP 38
RP 38
GSS
RP 38
RP 38
RP 38
GSS
RP 38
GSS
RP 38
GSS
RP 38
GSS
RP 38
RP 39
RP 39
RP 39
RP 40
RP 40
RP 40
RP 41
RP 41

IRPCmServer
IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRpCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IRpPCmServer
IGSS
IRpPCmServer
IRPCmServer
IRpCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IRPCmServer
IRpCmServer
IRpCmServer
IRPCmServer
IRPCmServer
IRpCmServer
IRPCmServer
IRpCmServer

28
TSM-19
{}
30
31
TSM-20

{}
TSM-21

{}
TSM-22

{}
TSM-23

{}
28
30
31
TSM-24

{}
TSM-25

{}
TSM-26

{}
28
TSM-27
{}
30
31
TSM-28

{}
TSM-29

{}
TSM-30

{}
TSM-31

{}
28
30
31
28
30
31
28
30

connect RP_41 31
connect RP_42 28
connect RP_42 30
connect RP_42 31
connect RP_43 28
connect RP_43 30
connect RP_43 31
connect RP_44 0

connect RP_44 0

connect RP_44 1

connect RP_44 1

connect RP_44 2

connect RP_44 2

connect RP_44 28
connect RP_44 30
connect RP_44 31
connect RP_45 28
connect RP_45 30
connect RP_45 31
connect RP_46_28
connect RP_46 30
connect RP_46_31
connect RP_47_28
connect RP_47_30
connect RP_47_31
connect RP_48 28
connect RP_48 30
connect RP 48 31
connect RP_49 28
connect RP_49 30
connect RP_49 31
connect RP_50 31
connect RP_51 31
connect RP 53 0

connect RP_53 19
connect RP_54 28
connect RP_54 30
connect RP_54 31
connect RP_55 28
connect RP_55 30
connect RP_55 31
connect RP_56_31
connect RP_57 31

RP 41
RP 42
RP 42
RP 42
RP 43
RP 43
RP 43
GSS

RP_44
GSS

RP 44
GSS

RP 44
RP 44
RP 44
RP 44
RP 45
RP 45
RP 45
RP 46
RP 46
RP 46
RP 47
RP 47
RP 47
RP 48
RP 48
RP 48
RP 49
RP 49
RP 49
RP 50
RP 51
RP 53
RP 53
RP 54
RP 54
RP 54
RP 55
RP 55
RP 55
RP 56
RP 57

IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31

IGSS {CLT-00}

IRPCmServer {}

IGSS {CLT-11}

IRPCmServer {}

IGSS {CLT-22}

IRPCmServer {}
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 31
IRPCmServer 31
IRPCmServer 0

IRPCmServer 19
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 31
IRPCmServer 31

61

connect RP_58 31
connect RP_59 31
connect RP_96 28
connect RP_96_30
connect RP_96 31
connect RP_97 28
connect RP_97_30
connect RP_97 31
connect RP_98 29
connect RP_98 31
connect RP_99 29
connect RP_99 31

Adding ETC Hardware

Connecting RP software components to Group Switch...

IT

connect C7ST2C-0& &-3
connect C7ST2C-0& & -3

connect RP_53 1
connect RP_53 1

Connecting RPsto GSS...

RP_58 IRPCmServer 31
RP_59 IRPCmServer 31
RP_96 IRPCmServer 28
RP_96 IRPCmServer 30
RP_96 IRPCmServer 31
RP_97 IRPCmServer 28
RP_97 IRPCmServer 30
RP_97 IRPCmServer 31
RP_98 IRPCmServer 29
RP_98 IRPCmServer 31
RP_99 IRPCmServer 29
RP_99 IRPCmServer 31
GSS IDL2Connect TSM-9-8
RP_50 IRPCmSearver 0
RP_53 IRPCmServer 1

GSS IDL2Connect TSM-9-14

Connecting STRsto STCsor GSS....

Connecting EMRPs to their STRYRPBCs...

connect EIA_ EMRP_0
connect EJIA_EMRP_0O
connect EIA_EMRP_8
connect EIA_EMRP_8

EIA_STR A
E1A_STR B
E1A_STR A
EIA_STR B

[EmrpbServer {0 A}
|[EmrpbServer {0 B}
[EmrpbServer {8 A}
|[EmrpbServer {8 B}

Connecting EMRP Software to their EMRP...

connect E1A_EMRP_0_EMGFDR

[EmrpCmServer {406 }

connect EIA_ EMRP_8 EMGFDR

[EmrpCmServer {406 }

62

E1IA_EMRP 0

E1A_EMRP 8

Configuring the CP...

config CP {

set-processor-configuration -model 21225 -frequency 3
set-memory-configuration -drsdevice 2 -drsboards 2 -psdevice 1 -
pscmdevice 2

load-dump

Ivaritmp/gjorgen/dump/R8A2A13 21225 SEA_eorgen.21220_emudum

p.gZ

}
config C7ST2C-0& & -3 {
c7st2c_setdevice-low 0 -high 3

}

#

List of devicesfound on dump which are currently not supported
or not added to the SEA Configuration Wizard.

#
#

Unsupported RPs: (0)

H# —_——

Unsupported RP software: (22)

#

C7ST2CR RP-51

#ETRALTR RP-54 RP-55

#ETRBLTR RP-48 RP-49 RP-54 RP-55
#ETRTGR RP-54 RP-55

#ETRTTR RP-48 RP-49

#FSIR RP-98 RP-99

RCLCCHR RP-56 RP-57 RP-58 RP-59
RCSCBR RP-56 RP-57 RP-58 RP-59
#RGRLCR RP-98 RP-99

RGSERVR RP-98 RP-99

RHLAPDR RP-56 RP-57 RP-58 RP-59
#RHSNTR RP-56 RP-57 RP-58 RP-59
RMPAGR RP-56 RP-57 RP-58 RP-59
RQRCQSR RP-56 RP-57 RP-58 RP-59

63

RQUNCR RP-56 RP-57 RP-58 RP-59

#RTGBR RP-98 RP-99

RTGPHDVR RP-98 RP-99

#RTTF1SIR RP-46 RP-47

#RTTF1S2R RP-46 RP-47

#RTTH1SR RP-46 RP-47

SRSR RP-40 RP-41 RP-42 RP-43

#TERTR RP-32 RP-33 RP-34 RP-35 RP-36 RP-37

RP-38 RP-39 RP-40 RP-41 RP-42 RP-43
RP-44 RP-45 RP-46 RP-47 RP-48 RP-49

RP-54 RP-55 RP-96 RP-97
Unsupported STRs: (0)
#
Unsupported EMRPs: (0)
#
Unsupported EMRP software: (7)
#
EXALOR E1A_O
#RICSR E1A O
#RILCOR E1A 8
#RILTR E1A_O
#RITSR E1A O
#TEETR E1A O
#TWR E1A_O

Default Software Simulations Used For The Following RF/EMRP
Software

IT

#"Cr7ST2CR 9000/CAA 140 053/3A R1BO1"

#"RPMBHR 1/CAA 135 2518/RPMBH R1B01"

#"TSMR 1/CAA 135 2511/TSM R1A17"

IT
1T

11.2Altered configuration file

Ivar/tmp/ejorgen/config/configR3B_ad13.axe

H - e e e e m e e m e e —mm e e mm e —————————————

Thisisaconfiguration file for SEA.

It describes which components that should be created and how they
should

be connected inbetween themselves to simulate an AXE-10

To run SEA on this configuration file give the following command:
sea -config /var/tmp/eorgen/config/configR3B_ad13.axe

Thisfile has been created from
Ivar/tmp/ejorgen/config/configR3B_ad13.axe
and altered to fit to RP HW connection.

o e -
Creating the CP...

create CP21220.CP21220.1 CP

Creating RPBHSs...

create RPBH.RPBHP.1 RPBH_O
create RPBH.RPBHS.1 RPBH_1
create RPBH.RPBHP.1 RPBH_2
create RPBH.RPBHS.1 RPBH_3
Creating RPs...

create RPSIM.RPV.1 RP_1
create RPSIM.RPAL1G.1 RP_32
create RPSIM.RPAL1G.1 RP_33
create RPSIM.RP4AL1G.1 RP_34
create RPSIM.RP4AL1G.1 RP_35
create RPSIM.RPAL1G.1 RP_36
create RPSIM.RP4AL1G.1 RP_37
create RPSIM.RP4AL1G.1 RP_38
create RPSIM.RPAL1G.1 RP_39
create RPSIM.RP4L1A.1 RP_40
create RPSIM.RP4L1A.1 RP 41
create RPSIM.RPAL1A.1 RP_42
create RPSIM.RP4L1A.1 RP 43

create RPSIM.RP4AL1A.1 RP_44

create RPSIM.RP4AL1A.1 RP_45
create RPSIM.RP4AS1A.1 RP_46
create RPSIM.RP4S1A.1 RP_47
create RPSIM.RPAS1A.1 RP_48
create RPSIM.RP4AS1A.1 RP_49
create RPSIM.RPV .1 RP 4

create RPSIM.RPG2A.1 RP_50

create RPSIM.RPG2A.1 RP_51

create RPSIM.RPG2A.1 RP_52

create RPSIM.RPG2A.1 RP_53

create RPSIM.RPAS1A.1 RP_54
create RPSIM.RP4S1A.1 RP_55
create RPSIM.RPG2A.1 RP_56

create RPSIM.RPG2A.1 RP_57

create RPSIM.RPG2A.1 RP_58

create RPSIM.RPG2A.1 RP_59

create RPSIM.RPAS1A.1 RP_96
create RPSIM.RP4S1A.1 RP_97
#create RPSIM.RPPSL1.1 RP_98
create RPSIM.RPPS1.1 RP_99
create RPPROXY .RPPROXY S.1 RPP_HW
Creating STRs...

create STRSIM.STR2C.1 E1A STR A
create STRSIM.STR2C.1 E1A_STR B

Creating RP software components...

1T

create GSS.GSS128.2

create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1

66

GSS

RP 32 0
RP 32 1
RP 32 28
RP 32 2
RP 32 30
RP 32 31
RP 32 3
RP 32 4
RP 32 5
RP 32 6
RP 32 7
RP 33 28

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2
create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2

create GSS.TSMR128.2

create GSS.TSMR128.2

create GSS.TSMR128.2

create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2

create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create GSS.TSMR128.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.TSMR128.2

create GSS.TSMR128.2

create GSS.TSMR128.2

create GSS.TSMR128.2

create GSS.TSMR128.2

create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1

RP 33 30
RP 33 31
RP 34 0

Py
T
®
=

£

I
WwWNN
RENR

000
l'Ul'Ul'U'U
© LR

Py
&

Py
R

Py
S

Ry
'Ul'UI'U
~Noohw

Py
2y
R

py)
o
(oY)
o1

RP 35 .
RP_35 .
RP 36 0
RP 36 1
RP _36_28
RP 36 2
RP 36 30
RP _36_31
RP 36 3
RP 36 4
RP 36 5
RP 36 6
RP 36 7
RP 37 28
RP 37 30
RP 37 31
RP 38 0
RP 38 1
RP 38 28
RP 38 2
RP 38 30
RP 38 31
RP 38 3
RP 38 4
RP 38 5
RP 38 6
RP 38 7
RP 39 28
RP 39 30

o1
W N
= O

(]
O8]

67

create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.CLTR.2

create GSS.CLTR.2

create RPCMSIM.RPMBHR.1
create GSS.CLTR.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create GSS.CLTR.2

create GSS.CLTR.2

create RPCMSIM.RPMBHR.1
create GSS.CLTR.2

create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create RPCMSIM.RPMBHR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPMMR.1
create SS7ST.C7ST2CR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.RPFDR.1
create RPCMSIM.CSLSNTR.1
create RPCMSIM.RPFDR.1
create CSLM7R.CSLM7R.1

68

RP 39 31
RP_40 28
RP 40 30
RP 40 31
RP 41 28
RP 41 30
RP 41 31
RP 42 28
RP 42 30
RP 42 31
RP 43 28
RP 43 30
RP 43 31
RP 44 0
RP 44 1
RP 44 28
RP 44 2
RP 44 30
RP 44 31
RP 45 0
RP 45 1
RP 45 28
RP 45 2
RP 45 30
RP 45 31
RP_46_28
RP 46 30
RP 46 31
RP 47 28
RP 47 30
RP 47 31
RP 48 28
RP 48 30
RP 48 31
RP 49 28
RP 49 30
RP 49 31
C7ST2C-08&-3
RP 50 31
RP 51 31
RP 53 0
RP 53 19
RP 53 1

create RPCMSIM.RPMBHR.1 RP_54 28

creste RPCMSIM.RPFDR.1 RP 54 30
create RPCMSIM.RPMMR.1 RP 54 31
creste RPCMSIM.RPMBHR.1 RP 55 28
creste RPCMSIM.RPFDR.1 RP 55 30
create RPCMSIM.RPMMR.1 RP 55 31
creste RPCMSIM.RPFDR.1 RP 56 31
creste RPCMSIM.RPFDR.1 RP 57 31
create RPCMSIM.RPFDR.1 RP 58 31
creste RPCMSIM.RPFDR.1 RP 59 31
creste RPCMSIM.RPMBHR.1 RP 96 28
create RPCMSIM.RPFDR.1 RP 96 30
creste RPCMSIM.RPMMR.1 RP 96 31
creste RPCMSIM.RPMBHR.1 RP 97 28
create RPCMSIM.RPFDR.1 RP 97 30
creste RPCMSIM.RPMMR.1 RP 97 31
#create RPCMSIM.RPIFDR.1 RP 98 29
#create RPCMSIM.RPFDR.1 RP 98 31
creste RPCMSIM.RPIFDR.1 RP 99 29
creste RPCMSIM.RPFDR.1 RP 99 31

Creating EMRPs...

IT

create EMRPSIM.EMRP3.1 E1A_EMRP_O
create EMRPSIM.EMRPD1.1 E1A_EMRP_8

Creating EMRP Software...

IT

creste EMRPCMSIM.EMGFDR.1 E1A_EMRP_O0_EMGFDR
create EMRPCMSIM.EMGFDR.1 E1A_EMRP_8 EMGFDR

Connecting RPBHs to the CP...

1T

connect RPBH_0O CP IRphbServer

0
connect RPBH_1 CP IRphbServer 1
connect RPBH_2 CcP IRphbServer 2
connect RPBH_3 CP IRphbServer 3
Connecting RPsto their RPBHS...
connect RP_1 RPBH_0 IRpbServer 1
connect RP_32 RPBH_1 IRpbSServer 32

connect RP_33 RPBH 1 IRpbSServer 33

connect RP_34 RPBH_1 IRpbSServer 34

connect RP_35 RPBH_1 IRpbSServer 35
connect RP_36 RPBH_1 IRpbSServer 36
connect RP_37 RPBH_1 IRpbSServer 37
connect RP_38 RPBH_1 IRpbSServer 38
connect RP_39 RPBH_1 IRpbSServer 39
connect RP_4 RPBH_O IRpbServer 4
connect RP_40 RPBH_1 IRpbSServer 40
connect RP_41 RPBH 1 IRpbSServer 41
connect RP_42 RPBH_1 IRpbSServer 42
connect RP_43 RPBH_1 IRpbSServer 43
connect RP_44 RPBH_1 IRpbSServer 44
connect RP_45 RPBH_1 IRpbSServer 45
connect RP_46 RPBH_1 IRpbSServer 46
connect RP_47 RPBH 1 IRpbSServer 47
connect RP_48 RPBH_1 IRpbSServer 48
connect RP_49 RPBH_1 IRpbSServer 49
connect RP_50 RPBH_1 IRpbSServer 50
connect RP_51 RPBH_1 IRpbSServer 51
connect RP_52 RPBH_1 IRpbSServer 52
connect RP_53 RPBH_1 IRpbSServer 53
connect RP_54 RPBH_1 IRpbSServer 54
connect RP_55 RPBH_1 IRpbSServer 55
connect RP_56 RPBH_1 IRpbSServer 56
connect RP_57 RPBH_1 IRpbSServer 57
connect RP_58 RPBH_1 IRpbSServer 58
connect RP_59 RPBH_1 IRpbSServer 59
connect RP_96 RPBH 3 IRpbSServer 96
connect RP_97 RPBH 3 IRpbSServer 97
#connect RP_98 RPBH_3 IRpbSServer 98
connect RPP_HW RPBH_3 IRpbSServer {98 RPPHW}
connect RP_99 RPBH 3 IRpbSServer 99

Connecting RP software components to their RP...

1T

connect RP_32 0 GSS IGSS TSM-0

connect RP_32 0 RP_32 IRPCmServer {}
connect RP_32 1 GSS IGSS TSM-1
connect RP_32 1 RP_32 IRpCmServer {}
connect RP_32 2 GSS IGSS TSM-2
connect RP_32 2 RP_32 IRPCmServer {}
connect RP_32 28 RP 32 IRPCmServer 28

70

connect RP_32_3
connect RP_32_3
connect RP_32 30
connect RP_32 31
connect RP_32 4
connect RP_32 4
connect RP_32 5
connect RP_32 5
connect RP_32 6
connect RP_32_6
connect RP_32 7
connect RP_32 7
connect RP_33 28
connect RP_33_30
connect RP_33 31
connect RP_34 0
connect RP_34 0
connect RP_34 1
connect RP_34 1
connect RP_34 2
connect RP_34 2
connect RP

connect RP

connect RP

connect RP

connect RP_
connect RP._.
connect RP

connect RP _.
connect RP_.
connect RP.

connect RP_34 6
connect RP_34 7
connect RP 34 7
connect RP_35 28
connect RP_35 30
connect RP_35 31
connect RP_36 0
connect RP_36 0
connect RP_36 1
connect RP 36 1
connect RP_36 2

connect RP_36 2

®

8

RRRREY
~ O

S

4

R

2
3
3
3
5
6

'3
4
5

RE

GSS
RP 32
RP 32
RP 32
GSS
RP 32
GSS
RP 32
GSS
RP 32
GSS
RP 32
RP 33
RP 33
RP 33
GSS
RP_34
GSS
RP 34
GSS
RP 34
RP 34
GSS
RP 34
RP 34
RP 34
GSS
RP 34
GSS
RP 34
GSS
RP 34
GSS
RP 34
RP 35
RP 35
RP 35
GSS
RP 36
GSS
RP 36
GSS
RP 36

IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRPCmMServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmMServer
IRpPCmServer
IRPCmServer
IRPCmMServer
IGSS
IRpPCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IRPCmServer
IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer
IRpCmServer
IRPCmServer
IRpCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IGSS
IRpCmServer

TSM-3
{}

30

31
TSM-4
{}
TSM-5
{}
TSM-6
{}
TSM-7
{}

28

30

31
TSM-8
{}
TSM-9
{}
TSM-10
{}

28
TSM-11
{}

30

31
TSM-12

{}
TSM-13

{}
TSM-14

{}
TSM-15

{}
28
30
31
TSM-16

{}
TSM-17

{}
TSM-18

{}

71

connect RP_36_28
connect RP_36_3
connect RP_36 3
connect RP_36_30
connect RP_36_31
connect RP_36 4
connect RP_36 4
connect RP_36 5
connect RP_36 5
connect RP_36_6
connect RP_36_6
connect RP_36 7
connect RP_36_7
connect RP_37_28
connect RP_37_30
connect RP_37_31
connect RP_38 0
connect RP_38 0
connect RP_38 1
connect RP_38 1
connect RP_38 2
connect RP_38 2
connect RP_38 28
connect RP_38 3
connect RP_38 3
connect RP_38 30
connect RP_38 31
connect RP_38 4
connect RP_38 4
connect RP_38 5
connect RP_38 5
connect RP_38 6
connect RP_38 6
connect RP_38 7
connect RP_38 7
connect RP_39 28
connect RP_39 30
connect RP_39 31
connect RP_40 28
connect RP_40 30
connect RP_40 31
connect RP_41 28
connect RP_41 30

72

RP 36
GSS
RP 36
RP 36
RP 36
GSS
RP 36
GSS
RP 36
GSS
RP 36
GSS
RP 36
RP 37
RP 37
RP 37
GSS
RP 38
GSS
RP 38
GSS
RP 38
RP 38
GSS
RP 38
RP 38
RP 38
GSS
RP 38
GSS
RP 38
GSS
RP 38
GSS
RP 38
RP 39
RP 39
RP 39
RP 40
RP 40
RP 40
RP 41
RP 41

IRPCmServer
IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IRPCmServer
IRPCmServer
IRPCmServer
IGSS
IRpCmServer
IGSS
IRPCmServer
IGSS
IRPCmServer
IRpPCmServer
IGSS
IRpPCmServer
IRPCmServer
IRpCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IGSS
IRPCmServer
IGSS
IRpCmServer
IRPCmServer
IRpCmServer
IRpCmServer
IRPCmServer
IRPCmServer
IRpCmServer
IRPCmServer
IRpCmServer

28
TSM-19
{}
30
31
TSM-20

{}
TSM-21

{}
TSM-22

{}
TSM-23

{}
28
30
31
TSM-24

{}
TSM-25

{}
TSM-26

{}
28
TSM-27
{}
30
31
TSM-28

{}
TSM-29

{}
TSM-30

{}
TSM-31

{}
28
30
31
28
30
31
28
30

connect RP_41 31
connect RP_42 28
connect RP_42 30
connect RP_42 31
connect RP_43 28
connect RP_43 30
connect RP_43 31
connect RP_44 0

connect RP_44 0

connect RP_44 1

connect RP_44 1

connect RP_44 2

connect RP_44 2

connect RP_44 28
connect RP_44 30
connect RP_44 31
connect RP_45 28
connect RP_45 30
connect RP_45 31
connect RP_46_28
connect RP_46 30
connect RP_46_31
connect RP_47_28
connect RP_47_30
connect RP_47_31
connect RP_48 28
connect RP_48 30
connect RP 48 31
connect RP_49 28
connect RP_49 30
connect RP_49 31
connect RP_50 31
connect RP_51 31
connect RP 53 0

connect RP_53 19
connect RP_54 28
connect RP_54 30
connect RP_54 31
connect RP_55 28
connect RP_55 30
connect RP_55 31
connect RP_56_31
connect RP_57 31

RP 41
RP 42
RP 42
RP 42
RP 43
RP 43
RP 43
GSS

RP_44
GSS

RP 44
GSS

RP 44
RP 44
RP 44
RP 44
RP 45
RP 45
RP 45
RP 46
RP 46
RP 46
RP 47
RP 47
RP 47
RP 48
RP 48
RP 48
RP 49
RP 49
RP 49
RP 50
RP 51
RP 53
RP 53
RP 54
RP 54
RP 54
RP 55
RP 55
RP 55
RP 56
RP 57

IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31

IGSS {CLT-00}

IRPCmServer {}

IGSS {CLT-11}

IRPCmServer {}

IGSS {CLT-22}

IRPCmServer {}
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 31
IRPCmServer 31
IRPCmServer 0

IRPCmServer 19
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 28
IRPCmServer 30
IRPCmServer 31
IRPCmServer 31
IRPCmServer 31

73

connect RP_58 31 RP_58 IRPCmServer 31
connect RP_59 31 RP_59 IRPCmServer 31
connect RP_96 28 RP_96 IRPCmServer 28
connect RP_96_30 RP_96 IRPCmServer 30
connect RP_96 31 RP_96 IRPCmServer 31
connect RP_97 28 RP 97 IRPCmServer 28
connect RP_97_30 RP_97 IRPCmServer 30
connect RP_97 31 RP_97 IRPCmServer 31
#connect RP_98 29 RP 98 IRPCmServer 29
#connect RP_98 31 RP_98 IRPCmServer 31
connect RP_99 29 RP_99 IRPCmServer 29
connect RP_99 31 RP_99 IRPCmServer 31

Adding ETC Hardware

Connecting RP software components to Group Switch...

connect C7ST2C-0& &-3 GSS IDL2Connect TSM-9-8
connect C7ST2C-0& &-3 RP_50 IRPCmSearver 0

connect RP_53 1 RP_53 IRPCmServer 1

connect RP_53 1 GSS IDL2Connect TSM-9-14
Connecting RPs to GSS...

Connecting STRsto STCsor GSS....

Connecting EMRPs to their STRS/RPBCs...

connect EIA_ EMRP_0 E1A STR A [EmrpbServer {0 A}
connect EJIA_EMRP_0 E1A_STR B |[EmrpbServer {0 B}
connect EIA_EMRP_8 E1A_STR A [EmrpbServer {8 A}
connect EJIA_ EMRP_8 E1A STR B |[EmrpbServer {8 B}

Connecting EMRP Software to their EMRP...

connect E1A_EMRP_0_EMGFDR

[EmrpCmServer {406 }

connect EIA_ EMRP_8 EMGFDR

[EmrpCmServer {406 }

74

E1IA_EMRP 0

E1A_EMRP 8

Configuring the CP...

config CP {

set-processor-configuration -model 21225 -frequency 3
set-memory-configuration -drsdevice 2 -drsboards 2 -psdevice 1 -
pscmdevice 2

load-dump

Ivaritmp/gjorgen/dump/R8A2A13 21225 SEA_eorgen.21220_emudum
p.gz

}

config RPP_HW {

rpproxy_setstate -bl 1

rpproxy_startcs -trace -hp "rp1111/CP_sim"
}

config C7ST2C-0& &-3 {
c7st2c_setdevice-low 0 -high 3

}

#

List of devicesfound on dump which are currently not supported
or not added to the SEA Configuration Wizard.

#
#

Unsupported RPs: (0)
——-

Unsupported RP software: (22)
#
C7ST2CR RP-51

#ETRALTR RP-54 RP-55

#ETRBLTR RP-48 RP-49 RP-54 RP-55

#ETRTGR RP-54 RP-55
#ETRTTR RP-48 RP-49
#FSIR RP-98 RP-99
RCLCCHR RP-56 RP-57 RP-58 RP-59
RCSCBR RP-56 RP-57 RP-58 RP-59
RGRLCR RP-98 RP-99

75

#RGSERVR
#RHLAPDR
#RHSNTR
#RMPAGR
#RQRCQSR
#RQUNCR
#RTGBR
#RTGPHDVR
#RTTF1SIR
#RTTF1S2R
#RTTH1SR
#SRSR

TERTR

RP-98 RP-99

RP-56 RP-57 RP-58 RP-59

RP-56 RP-57 RP-58 RP-59

RP-56 RP-57 RP-58 RP-59

RP-56 RP-57 RP-58 RP-59

RP-56 RP-57 RP-58 RP-59

RP-98 RP-99

RP-98 RP-99

RP-46 RP-47

RP-46 RP-47

RP-46 RP-47

RP-40 RP-41 RP-42 RP-43

RP-32 RP-33 RP-34 RP-35 RP-36 RP-37 RP-38
RP-39 RP-40 RP-41 RP-42 RP-43 RP-44 RP-45
RP-46 RP-47 RP-48 RP-49 RP-54 RP-55 RP-96
RP-97

Unsupported STRs: (0)

#

Unsupported EMRPs: (0)

#

Unsupported EMRP software: (7)

#

EXALOR E1A O

#RICSR E1A O

#RILCOR E1A_8

#RILTR E1A O

#RITSR E1A O

#TEETR E1A O

#TWR E1A O

Default Software Simulations Used For The Following RF/EMRP
Software

#"C7ST2CR 9000/CAA 140 053/3A R1BO1"
#"RPMBHR 1/CAA 135 2518/RPMBH R1BO1"
#"TSMR 1/CAA 135 2511/TSM R1A17"

76

11.3Synchronisation frames

Thisfileisbased on
/home/proj_y8/bsccadmin/public_html/abis logs/bts-sync-
1.processed.log

Block number : O
PSEQ:4194303, mod PSEQ:9
aFNu:1901712, mod aFNu:7
aFNd:1901713, mod aFNd:8
TAV : 0

0x0000
Oxd4ef
Oxffff
Oxffff
Oxffff
Oxffba
0x8490
Oxffff
Oxffba
0x8491
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 1
PSEQ:4194303, mod PSEQ:9
aFNu:1901716, mod aFNu:11
aFNd:1901718, mod aFNd:0
TAV : 0

7

0x0000
Oxd4ef
Oxffff
Oxffff
Oxffff
Oxffba
0x8490
Oxffff
Oxffba
0x8491
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 2

PSEQ:4194303, mod PSEQ:9
aFNu:1901721, mod aFNu:3
aFNd:1901722, mod aFNd:4

TAV : 0

0x0000
Oxd4ef
Oxffff
Oxffff
Oxffff
Oxffba
0x8499
Oxffff
Oxffba
0x849a
Oxffff
Oxffff
Oxffff
Oxffff

78

Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 3

PSEQ:0, mod PSEQ:0
aFNu:1901725, mod aFNu:7
aFNd:1901726, mod aFNd:8

Oxd4ef
0xff80
0x8000
Oxffff
Oxffba
0x849d
Oxffff
Oxffba
0x849e
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 4

PSEQ:4, mod PSEQ:4
aFNu:1901729, mod aFNu:11
aFNd:1901731, mod aFNd:0
TAV : 0

0x0000

79

Oxd4ef
0xff80
0x8004
Oxffff
Oxffba
0x84al
Oxffff
Oxffba
0x84a3
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 5

PSEQ:8, mod PSEQ:8
aFNu:1901734, mod aFNu:3
aFNd:1901735, mod aFNd:4
TAV : 0

0x0000
Oxd4ef
0xff80
0x8008
Oxffff
Oxffba
0x84a6
Oxffff
Oxffba
0x84a7
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

80

Oxffff
Oxffff
Oxffff
Oxffff

Block number : 6

PSEQ:13, mod PSEQ:0
aFNu:1901738, mod aFNu:7
aFNd:1901739, mod aFNd:8

0x800d
Oxffff
Oxffba
0Ox84aa
Oxffff
Oxffba
0x84ab
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 7

PSEQ:17, mod PSEQ:4

aFNu:;1901742, mod aFNu:11
aFNd:1901744, mod aFNd:0

TAV :0

0x0000
Oxd4ef
Oxff80

81

0x8011
Oxffff
Oxffba
0Ox84ae
Oxffff
Oxffba
0x84h0
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

Block number : 8

PSEQ:21, mod PSEQ:8
aFNu:1901747, mod aFNu:3
aFNd:1901748, mod aFNd:4

TAV : 0
0x0000
Oxd4ef
0xff80
0x8015
Oxffff
Oxffba
0x84b3
Oxffff
Oxffba
0x84b4
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

82

Oxffff
Oxffff

Block number : 9
PSEQ:26, mod PSEQ:0

aFNu:1901751, mod aFNu:7
aFNd:1901752, mod aFNd:8
TAV : 0

0x0000
Oxd4ef
0xff80
0x801a
Oxffff
Oxffba
0x84b7
Oxffff
Oxffba
0x84b8
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

83

11.4Slotlogtool response log

test1013.gorgen.47> iostream_decoder -bsclog 3 0 0
decode an output stream from bsc
PCU-SY NC frame detected

Block number : O
0000000000000000 0x0000
1111100001111111 Oxf87f
1111111110000000 O0xff80
1000000000000000 0x8000
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
PSEQ:0, mod PSEQ:0

TAV:0

UFE, Uplink Frame Error detected

PCU-SY NC frame detected
Block number : 1

0000000000000000 0x0000
1111100010111111 Oxf8bf
1111111110000000 Oxff80
1000000000000100 0x8004
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
1111111111111111 Oxffff
11111121222211111 Oxffff
11111121222211111 Oxffff

84

1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

PSEQ:4, mod PSEQ:4

TAV:0

PCU-SY NC frame detected

Block number : 2

(0000000000000000
1111100010111111
1111111110000000
1000000000001000
1111111111111112
1111111111111112
1111111111111111
1111111111111112
1111111111111112
1111111111111112
1111111111111112
1111111111111112
1111111111111113
1111111111111112
1111111111111112
1111111111111111
11111112111111111
1111111111111112
1111111111111111
111111111111111]

0x0000
Oxf8bf
Oxff80
0x8008
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

PSEQ:8, mod PSEQ:8

TAV:0

PCU-SY NC frame detected

Block number : 3

0000000000000000
1111100010111111
1111111110000000
1000000000001101

0x0000
Oxf8bf
0xff80
0x800d

1111111111111111
1111111111111111
11111111111111211
1111111111111111
1111111111111111
11111111111111211
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
11111111111111211
11111111111111211
11111111111111211
11111111111111211
11111111111111211

Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

PSEQ:13, mod PSEQ:0

TAV:0

PCU-SY NC frame detected

Block number : 4

0000000000000000
1111100010111111
1111111110000000

1000000000010001
1111111111111111
11111111111111211
1111111111111111
11111111111111211
1111111111111111
1111111111111111
1111111111111111
1111111111111111
11111111111111211
11111111111111211
11111111111111211
1111111111111111
11111111111111211

1111111111111111

11111111111111211

11111111111111211

0x0000
Oxf8bf
Oxff80
0x8011
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

PSEQ:17, mod PSEQ:4

TAV:0

86

PCU-SY NC frame detected

Block number : 5

0000000000000000
1111100010111111
1111111110000000
1000000000010101
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

0x0000
Oxf8bf
0xff80
0x8015
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

PSEQ:21, mod PSEQ:8

TAV:0

PCU-SY NC frame detected

Block number : 6

0000000000000000
1111100010111111
1111111110000000
1000000000011010
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

0x0000
Oxf8bf
0xff80
0x801a
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

87

1111111111111111
1111111111111111
1111111111111111
1111111111111111
1111111111111111

Oxffff
Oxffff
Oxffff
Oxffff
Oxffff

PSEQ:26, mod PSEQ:0

TAV:0

88

11.5GSL interface activation

send RPRSTARTGSL to RGRLCR

send: the signal was sent.

no monitor -long send MRSEIZEGSL <63245> from
RGRLCR:RGRLCR to RGRLCR:RP_DSPSUP
Ipdchind = 132

dspNumber = 4

macPid = 65759

no monitor -long send MRSEIZEGSLR<63246> from
RGRLCR:RP_DSPSUP to RGRLCR:RGRLCR
Ipdchind = 132

resultCode=0

no monitor -long send MRACTIVATEGSL<63233> from
RGRLCR:RGRLCR to RGRLCR:RP_DSPSUP
Ipdchind = 132 (Note: Channel 132)
dspNumber =4 (Note: DSP 4)

11.6GSL interface deactivation

send RPRSTOPGSL to RGRLCR

send: the signal was sent.

no monitor -long send MRRELEASEGSL <63242> from
RGRLCR:RGRLCR to RGRLCR:RP_DSPSUP

Ipdchind = 132

dspNumber =4

no monitor -long send MRRELEASEGSLR<63243> from
RGRLCR:RP_DSPSUP to RGRLCR:RGRLCR

Ipdchind = 132

89

11.7DSP synchronisation signals

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901752

no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT 4
to RGRLCR:RP_DSPSUP

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901757

no monitor -long send MRTXDATAREQ<63247> from
RGRLCR:RP_MAC_000 to RGRLCR:RP_DSPSUP
txBuffer[0] = 553

txBuffer[1] = 54484

txBuffer[2] = 54484

txBuffer[3] = 54484

txBuffer[4] = 54484

txBuffer[5] = 54484

txBuffer[6] = 54484

txBuffer[7] = 54484

txBuffer[8] = 54484

txBuffer[9] = 54484

txBuffer[10] = 54484

txBuffer[11] = 54484

txBuffer[12] = 54484

txBuffer[13] = 54484

txBuffer[14] = 54484

txBuffer[15] = 54484

txBuffer[16] = 54484

txBuffer[17] =0

txBuffer[18] = 29

txBuffer[19] = 1213

Ipdchind = 132

msind = 65535

confType=0

recind =17

releaseCause = 0

resType=0

bsn=0

msgSize =0

drxPeriod = 23

90

chType=0

timeStamp = 4705

psild=0

psiRepeatPeriod = 0
channelCodingScheme =0
transmitType = 38
storedNextPoll = 1
imsiMod1000Mod704 = 4512
splitPgCycleCode = 164
nextMsg_p = DPPDATAIND
prevMsg_p = DPPDATAIND

no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT 4

to RGRLCR:RP_DSPSUP

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901761

no monitor -long send MRTXDATAREQ<63247> from
RGRLCR:RP_MAC_000 to RGRLCR:RP_DSPSUP
txBuffer[0] = 553

txBuffer[1] = 54484

txBuffer[2] = 54484

txBuffer[3] = 54484

txBuffer[4] = 54484

txBuffer[5] = 54484

txBuffer[6] = 54484

txBuffer[7] = 54484

txBuffer[8] = 54484

txBuffer[9] = 54484

txBuffer[10] = 54484

txBuffer[11] = 54484

txBuffer[12] = 54484

txBuffer[13] = 54484

txBuffer[14] = 54484

txBuffer[15] = 54484

txBuffer[16] = 54484

txBuffer[17] =0

txBuffer[18] = 29

txBuffer[19] = 1217

Ipdchind = 132

msind = 65535

confType=0

recind = 17

91

releaseCause = 0

resType=0

bsn=0

msgSize =0

drxPeriod = 23

chType=0

timeStamp = 4705

psild=0

psiRepeatPeriod = 0

channelCodingScheme =0

transmitType = 38

storedNextPoll = 1

imsiMod1000Mod704 = 4512

splitPgCycleCode = 164

nextMsg_p = DPPDATAIND

prevMsg_p = DPPDATAIND

no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT_4
to RGRLCR:RP_DSPSUP

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901765

no monitor -long send MRTXDATAREQ<63247> from
RGRLCR:RP_MAC_000 to RGRLCR:RP_DSPSUP
txBuffer[0] = 553

txBuffer[1] = 54484

txBuffer[2] = 54484

txBuffer[3] = 54484

txBuffer[4] = 54484

txBuffer[5] = 54484

txBuffer[6] = 54484

txBuffer[7] = 54484

txBuffer[8] = 54484

txBuffer[9] = 54484

txBuffer[10] = 54484

txBuffer[11] = 54484

txBuffer[12] = 54484

txBuffer[13] = 54484

txBuffer[14] = 54484

txBuffer[15] = 54484

txBuffer[16] = 54484

txBuffer[17] =0

txBuffer[18] = 29

92

txBuffer[19] = 1221
Ipdchind = 132

msind = 65535

confType=0

recind = 17

releaseCause =0

resType=0

bsn=0

msgSize=0

drxPeriod = 23

chType=0

timeStamp = 4705

psild=0

psiRepeatPeriod = 0
channelCodingScheme =0
transmitType = 38
storedNextPoll =1
imsiMod1000M od704 = 4512
splitPgCycleCode = 164
nextMsg_p = DPPDATAIND
prevMsg _p = DPPDATAIND

no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT_4

to RGRLCR:RP_DSPSUP

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901770

no monitor -long send MRTXDATAREQ<63247> from
RGRLCR:RP_MAC_000 to RGRLCR:RP_DSPSUP
txBuffer[0] = 553

txBuffer[1] = 54484

txBuffer[2] = 54484

txBuffer[3] = 54484

txBuffer[4] = 54484

txBuffer[5] = 54484

txBuffer[6] = 54484

txBuffer[7] = 54484

txBuffer[8] = 54484

txBuffer[9] = 54484

txBuffer[10] = 54484

txBuffer[11] = 54484

txBuffer[12] = 54484

txBuffer[13] = 54484

93

txBuffer[14] = 54484

txBuffer[15] = 54484

txBuffer[16] = 54484

txBuffer[17] =0

txBuffer[18] = 29

txBuffer[19] = 1226

Ipdchind = 132

msind = 65535

confType=0

recind = 17

releaseCause = 0

resType=0

bsn=0

msgSize =0

drxPeriod = 23

chType=0

timeStamp = 4705

psild=0

psiRepeatPeriod = 0

channelCodingScheme =0

transmitType = 38

storedNextPoll = 1

imsiMod1000Mod704 = 4512

splitPgCycleCode = 164

nextMsg_p = DPPDATAIND

prevMsg_p = DPPDATAIND

no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT 4
to RGRLCR:RP_DSPSUP

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901774

no monitor -long send MRTXDATAREQ<63247> from
RGRLCR:RP_MAC_000 to RGRLCR:RP_DSPSUP
txBuffer[0] = 553

txBuffer[1] = 54484

txBuffer[2] = 54484

txBuffer[3] = 54484

txBuffer[4] = 54484

txBuffer[5] = 54484

txBuffer[6] = 54484

txBuffer[7] = 54484

txBuffer[8] = 54484

94

txBuffer[9] = 54484
txBuffer[10] = 54484
txBuffer[11] = 54484
txBuffer[12] = 54484
txBuffer[13] = 54484
txBuffer[14] = 54484
txBuffer[15] = 54484
txBuffer[16] = 54484
txBuffer[17] =0
txBuffer[18] = 29
txBuffer[19] = 1230
Ipdchind = 132

msind = 65535
confType=0

recind =17

releaseCause = 0
resType=0

bsn=0

msgSize =0

drxPeriod = 23
chType=0

timeStamp = 4705
psild=0

psiRepeatPeriod = 0
channel CodingScheme = 0
transmitType = 38
storedNextPoll = 1
imsiMod1000M od704 = 4512
splitPgCycleCode = 164
nextMsg_p = DPPDATAIND
prevMsg_p = DPPDATAIND

no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT 4

to RGRLCR:RP_DSPSUP

no monitor -long send MRTXDATAREQINIT<63248> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132

fnDI = 1901778

no monitor -long send MRTXDATAREQ<63247> from
RGRLCR:RP_MAC_000 to RGRLCR:RP_DSPSUP
txBuffer[0] = 553

txBuffer[1] = 54484

txBuffer[2] = 54484

txBuffer[3] = 54484

95

txBuffer[4] = 54484
txBuffer[5] = 54484
txBuffer[6] = 54484
txBuffer[7] = 54484
txBuffer[8] = 54484
txBuffer[9] = 54484
txBuffer[10] = 54484
txBuffer[11] = 54484
txBuffer[12] = 54484
txBuffer[13] = 54484
txBuffer[14] = 54484
txBuffer[15] = 54484
txBuffer[16] = 54484
txBuffer[17] =0

txBuffer[18] = 29
txBuffer[19] = 1234
Ipdchind = 132

msind = 65535

confType=0

recind = 17

releaseCause =0

resType=0

bsn=0

msgSize =0

drxPeriod = 23

chType=0

timeStamp = 4705

psild=0

psiRepeatPeriod = 0
channelCodingScheme =0
transmitType = 38
storedNextPoll = 1
imsiMod1000M od704 = 4512
splitPgCycleCode = 164
nextMsg_p = DPPDATAIND
prevMsg_p = DPPDATAIND
no monitor send MRIRQIND<63241> from RGRLCR:RP_DSPINT 4
to RGRLCR:RP_DSPSUP
no monitor -long send MRGSLERRORIND<63240> from
RGRLCR:RP_DSPSUP to RGRLCR:RP_MAC_000
Ipdchind = 132
errorType=1

96

