
Cylinder Individual Lambda Feedback

Control in an SI Engine

Examensarbete utf�ort i Fordonssystem
vid Tekniska H�ogskolan i Link�oping

av

Patrik Berggren

Andrej Perkovic

Reg nr: LiTH-ISY-EX-1649

Cylinder Individual Lambda Feedback

Control in an SI Engine

Examensarbete utf�ort i Fordonssystem
vid Tekniska H�ogskolan i Link�oping

av

Patrik Berggren

Andrej Perkovic

Reg nr: LiTH-ISY-EX-1649

Supervisor: Mikael Glavenius, Mecel AB

Tomas Henriksson, LiTH

Lars Nielsen, LiTH

Examiner: Lars Nielsen

Link�oping, January 16, 1996.

Abstract i

Abstract

In order to meet future standards regarding exhaust pollutants from SI engines, precise
control of the air fuel ratio is essential. To enable usage of fuel injectors with less
accuracy and to compensate for di�erences between cylinders due to wear, a cylinder
individual control of lambda is needed. In this thesis we develop a non model based multi
sensor controller to accomplish the above mentioned tasks. The presented controller
uses an absolute measurement of lambda at the conuence point and relative cylinder
individual lambda measurements. This is done to prepare for an exchange to cylinder
individual lambdas provided by an ionization current algorithm, that is being developed
at Mecel AB. The results are promising and the controller performance, including speed
and accuracy, is superior to the conventional lambda controller also described in the
thesis.

Key Word: conventional lambda control, cylinder individual, multi sensor lambda con-
trol.

Acknowledgments

This project is performed in cooperation between Mecel AB and the Division of Vehicu-
lar Systems at Link�oping University. We wish to thank our supervisors Mikael Glavenius
at Mecel AB and Lars Nielsen and Tomas Henriksson at the Division of Vehicular Sys-
tems at Link�oping University. Special thanks to Simon Edlund for computer assistance,
Lars Eriksson for helping us with Selma, Mattias Nyberg for providing Figure 2.1 and
Magnus Pettersson for general trouble shooting and LATEX support.

ii Notation

Notation

Operators and Functions

� output=1/input

Symbols

� throttle angle
� normalized air fuel ratio
�i normalized air fuel ratio in cylinder i
pman inlet manifold absolute pressure
ma air mass
mf fuel mass
mff fuel �lm mass
mfi injected fuel mass
mfv vaporized fuel mass
fc cut{o� frequency
K;Ky; Ti; Tiy controller parameters
e; e1; e2; e3; e4 di�erence between controller inputs
u; t1; t2; t3; t4 controller output signals
T1; T2 settling times
tdel transport delay to the conuence point
tdelcyl transport delay to close to cylinder sensor
tinj total fuel injection time (basic injection time + lambda correction time)
up�p u peak to peak value

Abbreviations

SI Spark Ignition
A/F Air/Fuel
(A/F)s Air/Fuel at stoichiometry
UEGO Universal Exhaust Gas Oxygen
EGO Exhaust Gas Oxygen
LQG Linear Quadratic Gaussian
rpm revolutions per minute
TWC Three{Way Catalyst
PID Proportional{Integral{Derivative
cyl cylinder
cp conuence point
sc single cylinder
rms root mean square
ref reference value
bhp brake horse{power

Contents iii

Contents

1 Introduction 1

1.1 Problem Speci�cation and Objective : 1

1.2 Limitations : 1

1.3 Methods : 2

1.4 Reader's Guide : 2

1.5 Previous Related Work : 2

2 Automotive Fundamentals 4

2.1 History : 4

2.2 Main Parts for A/F Control in an SI Engine : : : : : : : : : : : : : : : : : 4

2.3 What is � ? : 5

2.4 Three{Way Catalytic Converter : 7

2.5 Electronic Control Unit, Sensors and Actuators : : : : : : : : : : : : : : : 7

3 Opening Experiments 11

3.1 Operating Points : 11

3.2 Open Loop Control : 11

3.3 Choosing Sampling Rate : 12

3.4 Choosing Filters : 13

3.5 Ziegler{Nichols Rules of Thumb : 13

3.6 Some De�nitions : 14

4 Finding a Simulation Model 15

4.1 Mean Value Models of SI Engines : 15

4.2 Sensor Models : 16

4.3 Forming a Simulink Block for a Single Cylinder : : : : : : : : : : : : : : : 16

4.4 Forming a Simulink Block for a Sensor : 17

4.5 About the Simulations : 18

5 Single Sensor Lambda Control 19

5.1 Conventional Lambda Control : 19

5.2 Lambda Control Using One UEGO Sensor : : : : : : : : : : : : : : : : : : 29

5.3 Conclusions : 33

6 Multi Sensor Lambda Control 34

6.1 The Control Structure : 34

6.2 Implementation : 35

6.3 A Regulator Using all Available Information : : : : : : : : : : : : : : : : : 38

6.4 A Regulator with an Unknown O�set in Lambda : : : : : : : : : : : : : : 44

6.5 Conclusions : 50

7 Controller Veri�cation 51

8 Extensions 53

iv Contents

9 Conclusions 54

References 55

Appendix A: Laboratory Facility and Engine Speci�cations 56

Appendix B: Simulation Models 58

Appendix C: Code 60

1 Introduction 1

1 Introduction

1.1 Problem Speci�cation and Objective

The objective is to �nd a control structure that can control lambda in a cylinder indi-
vidual way. This shall be done in three stages:

� Cylinder individual lambda control using a UEGO sensor at the conuence point
and UEGO sensors located close1 to each cylinder.

� As above but the cylinder by cylinder placed sensors have an unknown o�set.

� Cylinder individual lambda control using a UEGO sensor at the conuence point
and cylinder individual lambdas estimated by an ionization current algorithm de-
veloped by Mecel AB.

The possibility to accomplish the last stage depends on the complexity of the control
problem and the work done by Mecel AB in developing an ionization current algorithm.

To get some results to compare the cylinder individual controller with, the following
stages shall be performed �rst:

� Conventional lambda control using an EGO sensor at the conuence point.

� As above but with a UEGO sensor.

1.2 Limitations

Below are the most important limitations listed.

� Locked fuel map and ignition angle during experiments.

� No exhaust gas recirculation (EGR).

� Control at three operating points, see Section 3.1.

� Lambda correction time limited to �2 ms.

� Not a perfectly tuned throttle control.

� All controllers use a reference value corresponding to � = 1 in order to simplify
comparisons between di�erent control structures.

� A limited sample rate of about 2000 Hz in the real time system.

� A resolution of 4:88 mV in the D/A{card corresponding to a 0:5 % error in lambda
for worst case.

� Time based sampling instead of event based.

1About 12 cm downstream the exhaust manifold.

2 1 Introduction

1.3 Methods

Controlling lambda includes a lot of di�culties to deal with. For example, fuel injections
taking place at discrete moments, non linearities in sensors and engine dynamics, systems
(cylinders) running parallel to each other, lambda control gives only a limited correction
to the basic injection time and cycle to cycle variations. Note that we can't measure the
A/F ratio in the mixture entering the cylinders, which we want to control. We can only
measure the oxygen content in the exhaust gases and by this gain information about the
A/F ratio.

To simplify the work we only use standard PI controllers. The reason for not using
PID controllers is that there is a high noise level in the laboratory and derivating a noisy
signal causes problems. Recall that more sophisticated methods like LQG{design always
contain P and I parts as basic blocks. This shows that studying PI control is a good
�rst approach. Remember: try simple things �rst.

1.4 Reader's Guide

If you are familiar with words like fuel map, three{way catalytic converter and the four
stroke principle you can omit Section 2. In Section 3 we describe the operating points
used for engine testing and how to choose anti aliasing �lters and sampling rate. We
also de�ne some expressions used later in the thesis. Section 4 is about the simulation
models made in Simulink. We model both the engine and the sensors. In Section 5 we
discuss conventional air fuel control used today and show simulations and experimental
results of implementations. In the section Multi Sensor Lambda Control (Section 6) we
start by showing cylinder individual control which utilizes all available information from
the sensors. Later on in the same section we modify the control structure to handle
an unknown o�set in the measured input signals. Both Section 5 and Section 6 show
simulations and experimental results. In Section 7 we verify the multi sensor controller
by changing to di�erent types of fuel injectors. At the end of each section we give some
conclusions. Possible extensions are discussed in Section 8. Conclusions for the entire
thesis are presented in Section 9. Appendix A describes the laboratory facility used for
engine tests. In Appendix B some larger simulation models are shown and in Appendix C
we �nd the complete controller code.

To make it easier to compare the performance of the presented control structures we
show �gures at one operating point, namely at 1500 rpm. All operating points data are
shown in a table after each section. Simulation results are only shown in tables.

1.5 Previous Related Work

A lot of work has been done in trying to improve lambda control, both sensor con-
struction and regulator algorithms. Some years ago there were no other sensors than
the discrete EGO sensor available and work was towards reconstructing lambda from
the discrete sensor signal. The UEGO sensors were introduced a couple of years ago
but are still relatively expensive, compared to the EGO sensors, for manufacturers of
production{line automobiles. Research has also been made on the open loop control
(fuel map) using more input parameters. New ideas are often �rst tested on a single
cylinder engine running at low engine speed and with light load. Some researchers use
crankshaft angle based sampling instead of time based sampling.

1.5 Previous Related Work 3

Below some examples of research topics, considering lambda control, are described.
Characteristic for all the cited articles and dissertations are the need of a good model
to achieve really good results.

In [13] it's described how to use a self tuning regulator (STR) in feedback control
from a continuous lambda sensor. They show that the controllability of lambda can be
improved by using an STR to compensate for changes in engine dynamics.

An article that describes how to control cylinder by cylinder lambda using two con-
tinuous sensors in a V6 engine is [5]. They use a rather complex model based regulator
which is able to estimate the cylinder by cylinder lambda from the sensor signals. This
requires an algorithm for estimating lambda that, unfortunately, only works at low engine
speeds, 800{1200 rpm, due to the sensor time constant. To enable higher engine speed
operation some kind of signal processing is needed to compensate for sensor dynamics.
The regulator also has feedforward from throttle angle to compensate for transients.

Another article dealing with cylinder individual lambda feedback control is [7]. The
main idea in this article is the possibility of using an observer to estimate each cylinder
lambda from a measurement slightly downstream the conuence point. To succeed with
this, one needs a model of the mixing behavior of exhaust gases from each cylinder at
the exhaust manifold conuence point. The estimated cylinder lambda values are then
fed to cylinder individual PID controllers. They also use a model to compensate for
sensor dynamics. The method was tested on a four cylinder 2.2 liters engine running at
1000 rpm.

For the interested reader there are lots of articles to read. A popular topic is adaptive
lambda control, see [3] and [15]. An interesting example of using sliding control is [11].
How to deal with transient errors in A/F are described in [8] and [2].

4 2 Automotive Fundamentals

2 Automotive Fundamentals

2.1 History

Back in the early 1980s almost every automobile engine had a carburetor to meter the
air mass ow to fuel mass ow ratio (A/F ratio). It's important to keep the A/F ratio in
the vicinity of 15:1 to achieve good engine performance and low emissions. New federal
exhaust pollution regulations in California made it hard for the car manufacturers to
ful�ll these regulations using the old carburetor technique. The change to fuel injectors
and electronic fuel control made it possible to use feedback control to meet the new
demands.

Due to even more decreasing levels of allowable exhaust pollutants the requirements
for accurate A/F ratio control have become very strict over the last decade. A cat-
alytic converter was introduced in the late 1970s to lower exhaust emissions. Especially
the three{way catalytic converter made it possible to dramatically reduce the exhaust
emissions, see Section 2.4.

The best commercial system of today uses a three{way catalytic converter combined
with fuel injectors and an A/F ratio sensor to perform acceptable feedback control.

To approve new automobiles they are tested in di�erent test cycles e.g.USA{FTP 75
and EEC/EU. The test cycles are designed to imitate real driving conditions i.e. city
driving and highway driving. During the tests the exhaust gases are collected in sample
bags. A direct comparison of the various emissions regulations is made di�cult by
di�erences between test cycles and associated di�erences in engine load. However, it can
be maintained that the most stringent of current limits are those applied in USA.

2.2 Main Parts for A/F Control in an SI Engine

Below are the most important physical components, concerning A/F control, and their
locations in the engine described together with a brief explanation of the four stroke
principle.

Air enters the cylinder via the throttle and the inlet manifold, see Figure 2.1. When
the throttle is closed we say that the throttle angle is zero and a wide open throttle
means 90� throttle angle. To fully understand an engine cycle we split the process into
four stages. First we have the induction stroke.

Induction stroke:

Intake valve: opened

Exhaust valve: closed

Piston travels: downwards

Combustion: none

Now air can ow into the cylinder and fuel is injected by a fuel injector. When the
piston reaches bottom dead center the inlet valve closes and the process moves into the
second stage.

Compression stroke:

Intake valve: closed

Exhaust valve: closed

Piston travels: upwards

Combustion: initial ignition phase

About 30{40 crankshaft degrees before top dead center the compressed air fuel mixture
is ignited by the spark plug, for more details see [4]. The third stage is the power stroke.

2.3 What is � ? 5

Power stroke:

Intake valve: closed

Exhaust valve: closed

Piston travels: downwards

Combustion: completed

The high pressure created by the burning mixture forces the piston downward. It's only
during this stroke that actual power is generated by the engine. When the piston, for
the second time, reaches bottom dead center the exhaust valve opens. Now we have
reached the �nal fourth stage.

Exhaust stroke:

Intake valve: closed

Exhaust valve: opened

Piston travels: upwards

Combustion: none

The upward moving piston forces burned gases from the cylinder through the exhaust
manifold into the catalytic converter and out the tailpipe into the atmosphere. Remem-
ber that one complete engine cycle requires two complete crankshaft rotations of 360�

each.

Piston

Fuel injector

Spark plug

Exhaust valve
Intake valve

To exhaust manifold

From inlet manifold

Top dead center

Bottom dead center

Catalytic converter
Inlet manifold

Throttle

Exhaust manifold

Fuel injector

Lambda sensor

Crankshaft

Confluence point

Figure 2.1. Principle sketch of a modern SI engine.

2.3 What is � ?

The A/F ratio is de�ned as the ratio between air mass ow, _ma, and fuel mass ow, _mf .

Air/Fuel ratio (A/F) =
_ma

_mf

Stoichiometry is the optimal mixture of air and fuel in which, when ignited, all of the
carbon and hydrogen would completely burn, yielding only carbon dioxide and water.
The stoichiometric value depends on the quality of the gasoline, but is normally between
14:57 and 14:702. In other words, about 10000 liters of air are required to support
combustion in one liter of fuel!

2From now on we will use 14:57 as the stoichiometric value.

6 2 Automotive Fundamentals

The parameter � (lambda) is the A/F ratio normalized with the stoichiometric value
which yields:

� =

_ma

_mf

(_ma

_mf
)s

When � exceeds 1 the mixture is called lean and in the same way it's called rich when � is
lower than 1. Under normal driving conditions � varies from about 0:8 to 1:25. A really
lean mixture (� > 1:3) ceases to be ignitable and mis�re starts to occur. Maximum
power is produced under a rich mixture when � is between 0:8 and 0:9. To reach the
economy range in Figure 2.2, without loosing drivability, one has to redesign the engine
for lean{burn purposes.

λ

0.8 1 1.2 1.4 1.6

High power range

High purification range

Engine power

Economy range

Fuel consumption rate

Figure 2.2. Engine power and fuel consumption rate versus �.

Di�erent Driving Modes

During a ride the engine operates in many di�erent driving modes. Below is a description
of the most commonly used modes:

� Cold start occurs when starting a cold engine. Since the engine isn't warm, fuel
will condensate on the walls in the cylinders which require more fuel to be injected.
Also if the input air temperature is low problems with vaporization of the fuel must
be considered.

� Part{throttle operation is the normal driving mode. Now we have a compromise
between low fuel consumption and pollutions. Regulations require a low pollution

2.4 Three{Way Catalytic Converter 7

grade which implies a precise control of � around the stoichiometric value, see
Section 2.4.

� With acceleration we mean suddenly opened throttle valve. The engine should
respond by providing its maximum torque. Figure 2.2 shows a necessity to enrich
the air{fuel mixture to � � 0:85.

2.4 Three{Way Catalytic Converter

The main task for a catalytic converter is to reduce the emissions of at least one of
the following substances: carbon monoxide (CO), hydrocarbons (HC) and oxides of
nitrogen (NOx). One wants to remove CO because it's a toxic gas and HC and NOx

because they conduce to producing smog.
There is one catalytic converter, the three{way catalytic converter (TWC), that

can, when operated under certain conditions, simultaneously remove all three pollutive
components to a high degree.

Operating Conditions

Optimal operating temperature for the catalytic converter is between 400{800 �C but
catalytic conversion starts at 250 �C. If operating temperatures above 800 �C are used
the thermal aging increases severely. In general, a catalytic converter can under ideal
operating conditions have a service life of up to 100000 km, see [4] p 25.

The Narrow Operating Window

The above mentioned certain conditions for the TWC are illustrated in Figure 2.3. What
one can see is that � must be held within a very narrow window at the stoichiometric
ratio. The width of the window is, for 80 % conversion e�ciency for all three pollutants,
approximately 0:7 % in �. This accuracy of the � control is today practically impossible
to achieve without using sophisticated model based controllers in a laboratory environ-
ment. Practical experience shows that the narrow window can be broadened to 7 % in
� if oscillations are introduced in �. The frequency of these oscillations should be about
0:5{1 Hz, see [10] pp 655.

2.5 Electronic Control Unit, Sensors and Actuators

Below we will describe how the electronic control unit performs fuel control using fuel
injectors and lambda sensors.

Electronic Control Unit

The electronic control unit (ECU), see Figure 2.4, is a microprocessor based controller
with a real time system. Examples of input signals are:

� throttle valve position, �.

� inlet manifold absolute pressure, pman.

� engine coolant temperature.

� engine speed, rpm.

8 2 Automotive Fundamentals

0.8 1 1.2 1.4 1.6
0

2

4

6

8

10

1

2

3

4

5

0

HC

NO

CO

λ

N
O

x
an

d
H

C
 in

 ‰

x

C
O

 v
ol

um
e

in
 %

Window for 80 % conversion efficiency

Figure 2.3. The narrow operating window for a TWC. Values of CO, NOx and HC are shown

before a catalytic conversion has occured.

� exhaust gas recirculation, EGR, valve position.

� signals from oxygen sensors.

There are of course also output signals to actuators3 like:

� fuel metering control.

� ignition control and timing.

� exhaust gas recirculation control.

Sensors Electronic Control Unit Actuators

Figure 2.4. Principle sketch of the ECU with sensors and actuators.

Among many other things the ECU performs calculation of correct amount of fuel to
be injected into the cylinders. It starts with a basic injection time found in a look
up table (fuel map) using engine speed and inlet manifold absolute pressure as input

3A mechanism for moving or controlling something indirectly instead of by hand e.g. fuel injectors

and servo motors.

2.5 Electronic Control Unit, Sensors and Actuators 9

parameters. A basic injection time is always found in the fuel map4 and since we don't
have a feedback signal we call it open loop control.

During some driving modes (e.g. part{throttle operation) the fuel injection system
works in a closed loop using the lambda sensor output as a feedback signal. The feedback
signal is only allowed to correct the basic injection time by approximately 25 %. The
reason to use feedback is to correct for o�sets that might occur due to engine wear or
di�erent environmental conditions.

Sensors

There are primarily two types of lambda sensors available which di�er in price and per-
formance. They both work by measuring the oxygen concentration (they are sometimes
called oxygen sensors) in the exhaust gases. The amount of oxygen after combustion is
uniquely coupled to the air fuel mixture and we can therefore gain information about
lambda by studying exhaust gases.

The exhaust gas oxygen (EGO) sensor is a discrete sensor with switching point
around the stoichiometric value, see Figure 2.5. It gives a high voltage signal (� 0:9 V)
when � < 1 and a low voltage signal (� 0:1 V) when � > 1. Since the EGO signal
behaves like a relay we can only sense a lean or rich air fuel mixture. Almost every
modern SI engine equipped automobile uses an EGO sensor because it gives acceptable
performance at a low cost.

0.8 1 1.2 1.4 1.6
0

2

4

6

8

10

2

3

4

EGO sensor

 A
m

ou
nt

 o
f o

xy
ge

n
in

 %
.

E

G
O

 s
en

so
r,

 V
ol

t /
 1

0.

2O

UEGO sensor

U
E

G
O

 s
en

so
r,

 V
ol

t.

λ

Figure 2.5. Characteristics for EGO and UEGO sensors.

The other type of sensor is the universal exhaust gas oxygen (UEGO) sensor, some-
times called a linear oxygen sensor. We note that the behavior is continuous and

4Usually this basic injection time is compensated for low battery voltage and low temperatures.

10 2 Automotive Fundamentals

we can measure an absolute lambda value over the engines whole operating range
(0:8 < � < 1:3).

Both EGO and UEGO sensors need an operating temperature above 400 �C. Most
of todays sensors are preheated to quickly reach an acceptable working temperature, but
it's still one of the reasons to use open loop control during cold starts.

Lambda sensors don't instantaneously adjust to a change in air fuel mixture. That
because of two reasons: �rst the sensor has a time constant of about 0:1 s, then one
has to consider the transport delay when exhaust gases travel from the cylinder to the
location of the sensor. Thus we can model a linear lambda sensor as

1

1 + 0:1s
e�stdel :

We see that simply by moving the sensor further upstream the exhaust manifold there
is a possibility to achieve faster lambda control.

Fuel Injectors

Each fuel injector is essentially an electrically actuated valve. When activated the valve
opens and fuel is sprayed into the air owing into the cylinder. The time a fuel injector
is open is determined by the duration of the activation signal. Because the fuel pressure
is constant, the amount of fuel actually injected by the fuel injector depends solely upon
the valves open time (injection duration). Thus the ECU can perform fuel calculation
using fuel time rather than fuel volume.

The injection time is in the range 4 < tinj < 10 ms. Opening of the valve isn't
instantaneous, it has a time delay of about half a ms. This delay may vary with the fuel
injectors age due to wear.

3 Opening Experiments 11

3 Opening Experiments

Here we present the results from some opening experiments like open loop control and
step response tests. We also describe the chosen operating points, some de�nitions and
the Ziegler{Nichols rules of thumb.

3.1 Operating Points

Three operating points are chosen. They are characterized by (speed, pman). The three
points are presented in Table 3.1. In this table we also present the corresponding values
for engine torque, M , throttle angle, �, and total fuel injection time, tinj, giving � � 1.
The operating points are chosen in such a way that they cover the most interesting parts

speed [rpm] pman [kPa] M [Nm] �� tinj [�s]

1500 60 80 25 6750

2250 40 50 26 4500

3000 60 100 34 7750

Table 3.1. The chosen operating points.

of the engines operating range. The reason for not choosing a higher speed is that when
running at high speed (� 3500 rpm) the used electronic throttle control is unreliable.
From now on the operating points are called 1500, 2250 and 3000 for convenience. The
steps in � during closed loop control are 3� around the values given in Table 3.1.

3.2 Open Loop Control

During open loop control no lambda feedback is used and the injection times are deter-
mined only by the fuel map values. The goal with the project is to eliminate di�erences
between cylinders and since di�erences in our test engine are small (4 % in stationarity
and 10 % during transients in lambda) we add o�sets to the actual fuel injection times
making some cylinders lean and others rich. In Table 3.2 we see the chosen o�set times.
They result in cylinder individual lambdas between 0:93 (for cylinder 1) and 1:11 (for
cylinder 3) in stationarity. At the conuence point lambda tends to be slightly rich.
To keep lambda at the same values independent of operating point, di�erent o�sets in

Operating point Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4

1500 600 250 �500 600

2250 500 250 �250 250

3000 500 250 �500 500

Table 3.2. O�set fuel injection times, in �s.

injection times are used. Figure 3.1 shows lambda values during open loop control with
o�set times added at 1500 rpm. This is a typical lambda behavior. Notice the di�erences
between single cylinders and that the mean value for lambda at the conuence point is
far from 1.

12 3 Opening Experiments

0 1 2 3 4 5 6 7 8 9 10
0.9

1

time [s]

0 1 2 3 4 5 6 7 8 9 10
0.8

1

time [s]

0 1 2 3 4 5 6 7 8 9 10
0.8

1

1.2

time [s]

�
c
p

�1

�2

�3

�4

Figure 3.1. Open loop control with o�sets in the fuel injection times at 1500 rpm. Top: Lambda

at the conuence point. Middle and bottom: Cylinder individual lambda values.

When we in Section 5 and Section 6 evaluate new controllers and control structures
we lock the fuel map which means constant basic injection time5. This is actually not
so realistic since in reality one always uses new fuel map values for each injection. How-
ever, when comparing di�erent controllers a constant basic injection time is convenient.
Another reason for locking the fuel map is that the picked fuel map values di�er very
much from cycle to cycle due to noisy inlet manifold pressure measurements.

3.3 Choosing Sampling Rate

To gain information about the system some step response tests are performed. By
studying the UEGO sensor step response when making changes in fuel injection time
one can determine a cut{o� frequency. The steps are between 0:5 and 1 ms which result
in � variations from 0:94 to 1:06. The rise times are in the range of 0:14 s (2250 rpm)
to 0:22 s (3000 rpm). A rule of thumb, see [12], is to place between 4 and 8 sampling
points on the step response. Testing all three operating points and considering the high
noise level at high frequencies we choose 40 Hz as sampling rate corresponding to at least
6 points on the interesting part of the step response. Since the rise times don't di�er
too much between the operating points we use the same sampling rate at all operating
points. Frequency response tests show that sampling at 25 Hz is good enough for the

5The ignition angle is also locked.

3.4 Choosing Filters 13

EGO sensor but since over{sampling isn't a big problem we use the same sampling rate
for all sensors and operating points.

3.4 Choosing Filters

Before a signal enters the controller it's �ltered through both a digital and an analog
�lter. They are used for anti aliasing and noise purposes. The analog �lter is a low pass
RC{lag. Experience showed that the cut{o� frequency isn't of great importance as long
as it's higher than the sensors bandwidth! Of course the cut{o� frequency must be lower
than half the sampling rate. Since the lambda signal doesn't contain information above
10 Hz, see Heywood [10], and since we use standard resistor and capacitor components
the cut{o� frequency becomes 159 Hz. Because noise enters the system both before and
after the analog �lter we use a high sample rate, 2000 Hz6, and �lter digitally with a 2:nd
order Butterworth �lter with a cut{o� frequency of 20 Hz, half the controllers sampling
rate. Using a 2:nd order �lter is suitable, a higher order would lead to a too high phase
lag. To summarize we use a low pass RC �lter (fc = 159 Hz), sample with 2000 Hz
and �lter digitally with a Butterworth �lter (fc = 20 Hz). The output signal from the
Butterworth �lter is decimated at the controller sampling rate, 40 Hz. These choices of
�lters give a noise level of about 7 mV corresponding to 0:6 % in � under lean conditions
and 0:3 % under rich conditions for the UEGO signals. The di�erence between rich and
lean operation depends on the nonlinearity in the UEGO sensor characteristic. The EGO
sensor signal isn't a�ected much due to noise since the di�erence in voltage between rich
(0:9 V) and lean (0:1 V) is much bigger than the noise amplitude.

3.5 Ziegler{Nichols Rules of Thumb

To �nd PI parameter values for the control structures involving UEGO sensors the
Ziegler{Nichols rules of thumb, see [6], are applied. The controller (PI) is assumed to
be on the following form:

e(t) = r(t)� y(t)

u(t) = Ke(t) +
K

Ti

Z t

0

e(�)d�

Let Ti = +1. Increase K until a stable self oscillation occurs. Note the corre-
sponding K{value, K0, and the period, T0. The proper controller parameters are then
determined as

K = 0:45K0

Ti = T0=1:2:

A disadvantage with the above controller parameterization is that it's unable to contain
only an integral part. By re{parameterization

u(t) = Ke(t) +
1

Ti

Z t

0

e(�)d� (3.1)

6The controller can't sample faster without overload.

14 3 Opening Experiments

we get rid of that problem. The rules of thumb are then:

K = 0:45K0

Ti =
T0=1:2

0:45K0

=
T0

0:54K0

When the Ziegler{Nichols rules of thumb are applied, no o�sets are introduced in
order to simulate a new engine. Furthermore the fuel map is locked.

3.6 Some De�nitions

Some of the de�nitions used in the evaluations in the following sections are described
below.

By sc, single cylinder, we mean the maximum or minimum value found in any cylin-
der. By cp we mean the exhaust manifold conuence point.

The time measurement T1 is the time it takes to force � back into the interval
[0:96; 1:04] after a positive step in throttle angle has been applied. In a similar way T2
is related to a negative step. Note that if an overshoot occurs this results in a longer
T1 or T2 i.e. T1 and T2 are the times to reach a � in the above mentioned interval in
stationarity.

The rms value is de�ned as

rms =
1p
n

vuut nX
i=1

(�cp(i)� 1)2 � 100%

4 Finding a Simulation Model 15

4 Finding a Simulation Model

We need some kind of simulation model to test our control principles on and to �nd out
how to choose controller parameter values before we carry on with experimental tests
on a real engine. To �nd a simulation model we �rst derive the necessary equations to
calculate � from fuel injection time and air mass ow, see Section 4.1 and Section 4.2.
The second step includes �nding proper model parameter values and forming Simulink
blocks for a single cylinder, see Section 4.3, and for di�erent sensors, see Section 4.4.
For more information about Simulink see [1].

4.1 Mean Value Models of SI Engines

If one wants to model a four stroke SI engine completely, it requires a model that handles
e.g.non linearities in sensors and engine dynamics, fuel injections taking place at discrete
moments and cycle to cycle7 variations. A class of models which is intermediate between
large cyclic simulation models and empirical transfer function models is mean value
models, described in [9].

As the name indicates the model is restricted to describe the mean values of the
engine variables. Time scale is much longer than required for a single engine cycle but
small enough to describe the most rapidly changing engine variables. Relationships
between engine variables where it takes only a few engine cycles to reach equilibrium are
expressed with static equations. On the other hand, relationships where it takes between
10 and 1000 cycles to reach equilibrium are expressed with di�erential equations.

Three states are needed in the mean value model of the SI engine namely: fuel �lm
mass ow, _mff , crankshaft speed, n (in Hz), and inlet manifold absolute pressure, pman.
The engine input variables are throttle angle, �, injected fuel mass ow, _mfi, and ignition
timing angle. Engine load, power or torque, is treated as disturbances of the engine.
Since we are only interested in fuel dynamics we only derive the proper equations.

The equations that are needed to describe the behavior in � are derived below.
Equation 4.1 tells us how to calculate the injected fuel mass ow, _mfi, from the calculated
total fuel injection time, tinj. The parameter t0 is fuel injector dead time, n is crankshaft
speed and k is a conversion factor from fuel injection time to fuel mass ow. The
factor 1/2 originates from that a cycle corresponds to two crankshaft rotations.

_mfi =
n

2
k(tinj � t0) (4.1)

The injected fuel mass ow splits in two parts, vaporized fuel and fuel �lm on the
manifold walls. Vaporization is so fast that a static equation will do, thus:

_mfv = (1�X) _mfi (4.2)

The remaining part, X, becomes fuel �lm in the manifold:

�mff =
1

�f
(� _mff +X _mfi) (4.3)

Adding fuel vapor mass ow, _mfv, and fuel �lm mass ow, _mff , gives the cylinder port
fuel mass ow, _mf , that is:

_mf = _mfv + _mff (4.4)

7With a cycle we mean the four strokes i.e. two crankshaft rotations.

16 4 Finding a Simulation Model

Combining Equation 4.2, 4.3 and 4.4 yields:

_mf =
1 + (1�X)s�f

1 + s�f
_mfi (4.5)

This equation is also derived in [9]. For a given throttle angle, �, the air mass ow into
the cylinder, _ma, is assumed to be constant. Now we use the de�nition of � to calculate
�c in the gases leaving the cylinder:

�c =

_ma

_mf

(_ma

_mf
)s

(4.6)

Thus the equations needed to calculate �c from tinj , n and _ma are 4.1, 4.5 and 4.6.

4.2 Sensor Models

Since the sensor isn't placed directly after the exhaust valve there is a mandatory trans-
port delay, tdel. Furthermore, the sensor (EGO and UEGO type) is assumed to have
dynamics which can be described by a �rst order system. Thus:

�m =
1
�l
e�stdel

s+ 1
�l

�c (4.7)

Due to noise and to avoid aliasing we also need a second order low pass �lter which
�nally gives, for UEGO sensors:

�f =
B(s)

A(s)
�m (4.8)

For the EGO sensor we also need a relay like part:

rf =
B(s)

A(s)
sign(1� �m) (4.9)

The equations needed to calculate �f from �c are then 4.7 and 4.8 for a UEGO sensor.
To calculate the output from an EGO sensor the required equations are 4.7 and 4.9.

4.3 Forming a Simulink Block for a Single Cylinder

A simulation model in Simulink for a single cylinder is given in Figure 4.1. This block
is called cylinder from now on in the simulation models. Note that in this model we
have added some further signals. Lambda correction time is the output from the lambda
controller, throttle is used to simulate changes made by the driver and some noise is
introduced to imitate actual driving conditions. Noise in _ma and in tinj have frequency
n=2 corresponding to the injection frequency for a single cylinder. The maximal noise
amplitudes are 5 % in dma0 and 0.5 ms in tinj. The variation in n is a sine wave with
an amplitude of 25 rpm and frequency 0.15 Hz.

Typical parameter values, at 1500 rpm (n = 25 Hz), are X = 0:2, tauf = 0:3 s,
t0 = 0:5 ms, tmap = 7:0 ms, dma0 = 0:7 �25=1000 = 0:0175 and k = 2 �0:7=(1000 �14:57 �
(0:007 � 0:0005)) = 1:4=94:705 � 0:014. These values and throttle = 1 correspond to
� � 1 under stationary conditions.

4.4 Forming a Simulink Block for a Sensor 17

Band−Limited
White Noise1

tmap

Constant5

+
+
+

Sum3

−
+

Sum2

t0

Constant4

tauf(1−X).s+1

tauf.s+1

Transfer Fcn

*

Product1

k

Constant3

0.5

Constant2

n

Constant1

+
+

Sum1

Signal
generator

throttle

dma0

Constant6

Band−Limited
White Noise2

+
+

Sum4

*

Product2

lambda
correction

time

2

out_2

1

out_1

2

in_2

1

in_1 tinj

_mfi _mf

_ma

Figure 4.1. Simulation model for a single cylinder as a Simulink block.

4.4 Forming a Simulink Block for a Sensor

A simulation model in Simulink for a UEGO sensor and an anti aliasing �lter is given
in Figure 4.2.

B

A

Transfer Fcn2

1

taul.s+1

Transfer Fcn1
Transport Delay1

1/u

Fcn

*

Product1

1/(AFs)

Constant1

1

in_1

1

out_1

2

in_2

�m�c �f

_ma

_mf

Figure 4.2. Simulation model for a UEGO sensor and an anti aliasing �lter as a Simulink block.

By introducing a relay like part, here the signum function, we get the block for an
EGO sensor, see Figure 4.3.

A typical time constant for the sensors is taul = 0:085 s. For convenience we use
the same parameter value for EGO and UEGO sensors. Running at 1500 rpm gives a
transport delay in the order tdel = 0:17 s (to the conuence point). Furthermore, we
assume that the transport delay to the close to cylinder located UEGO sensors, tdelcyl,
is tdel

5
. Choosing the �lter as a second order low pass Butterworth �lter with cut{o�

frequency 20 Hz gives B = 15791 and A = s2 + 178s + 15791. Since the conversion
characteristic from volt to lambda for the UEGO sensor is quite well known it isn't a
too coarse approximation to assume the UEGO sensor being linear. From now on, these
blocks are called UEGO and �lter and EGO and �lter in the simulation models.

18 4 Finding a Simulation Model

1

taul.s+1

Transfer Fcn1
Transport Delay1

1/u

Fcn

*

Product1

1/(AFs)

Constant1

1

Constant2

−
+

Sum Sign

B

A

Transfer Fcn2

1

in_1

2

in_2

1

out_1

�m�c rf
_mf

_ma

Figure 4.3. Simulation model for an EGO sensor and an anti aliasing �lter as a Simulink block.

4.5 About the Simulations

To build a complete simulation model of an engine in Simulink the above mentioned
blocks are combined with time discrete PI controllers running with a sampling rate equal
to 40 Hz. The controllers are allowed to correct the injection time with a maximum of
�2 ms.

How to calculate the lambda value measured downstream the conuence point from
the cylinder individualmeasurements is a quite complicated problem. The �rst approach,
assuming that lambda at the conuence point is the mean value of the cylinder individual
measured lambdas, isn't good enough because the fuel injection times di�er from cylinder
to cylinder due to disturbances and o�sets. The second approach, assuming that the
engine has a transfer function equal to 1, will do, thus:

�cp =
cyl#1 _ma + cyl#2 _ma + cyl#3 _ma + cyl#4 _ma

cyl#1 _mf + cyl#2 _mf + cyl#3 _mf + cyl#4 _mf

1

(A=F)s

Note that a transport delay from the cylinders to the conuence point is also required.
To �nd PI parameter values for the control structures involving UEGO sensors the

Ziegler{Nichols rules of thumb, see Section 3.5, are applied.
When the Ziegler{Nichols rules of thumb are applied, all cylinders have the same _ma

and all fuel injectors have the same t0 in order to simulate a new engine. To imitate
di�erences between fuel injectors and between intake valves, cylinder individual t0 and
_ma are introduced representing aging. The cylinder individual values, see Table 4.1, are
used during the actual simulations. The values are chosen to give the same e�ect as the
o�set times in Section 3.2.

cylinder # dma0�? t0�?
1 dma0 � 0:9 t0 � 1:5
2 dma0 � 0:95 t0 � 2
3 dma0 � 1:1 t0 � 2
4 dma0 � 0:9 t0 � 1:5

Table 4.1. Cylinder individual parameters used during simulations.

To simulate steps in throttle angle the throttle, see e.g.Figure 4.1, is switched between
0:9 and 1:1.

5 Single Sensor Lambda Control 19

5 Single Sensor Lambda Control

In this section we implement the conventional lambda control used in production au-
tomobiles to compare with our designed controllers. Di�erences between control using
EGO and UEGO sensor are shown both in simulations and by experimental results.

5.1 Conventional Lambda Control

By conventional lambda control we mean the combination of a single EGO sensor and an
I or PI controller. The reason for studying conventional lambda control is that we need
a controller to compare our controllers properties with. First we use only an I controller,
limit cycle control, and then we also introduce a P part, jump back control.

Limit Cycle Control

When combining a relay like feedback signal with a system with a pure transport delay
and an I controller so called limit cycles occur. Below are the period and amplitude
for the oscillations in the controller output derived. To simplify the calculations the
engine is assumed to have a transfer function equal to 1 and the EGO sensor is assumed
to behave like a perfect relay. The EGO sensor output is 1 when � < 1 and 0 when
� > 1. The transport delay, tdel, is in this example 1 s and Ti in Equation 3.1 is 10.
The system is illustrated in Figure 5.1. The controller output is a correction to the fuel
injection time picked from the fuel map. The air mass ow is constant in this example.
The �rst approach, using describing function, see [6], to calculate the period, doesn't

u
Engine

λ

EGO

e0.5
+
-

signum fcn

e
stdel-I/PI

Figure 5.1. A principle sketch of EGO sensor control.

work because the system doesn't have low pass properties. Instead we use a heuristic
method to calculate the period and amplitude. In Figure 5.2 �, the controller output,
u, and the EGO sensor output are shown. At A � switches from rich to lean. When the
inuence of the lean mixture reaches the EGO sensor at B, it switches to 0 (lean) and
the controller starts to enrich the mixture. At C � switches from lean to rich and again
it takes 1 s, corresponding to the transport delay, before the EGO sensor switches at
D. The controller now starts to make the mixture more lean and at E � again switches
from rich to lean. This is observed at the EGO sensor at F . In Figure 5.2 we see that
the period, T , is equal to four times the time delay

T = 4tdel: (5.1)

This means that the shorter the transport delay is, the higher the frequency of the limit
cycles will be. The transport delay decreases as engine speed increases, which implies
higher frequencies at higher engine speeds. If the engine and sensor dynamics are faster
than the transport delay, Equation 5.1 gives a good approximation of the transport
delay.

20 5 Single Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

time [s]

E
G

O
 s

en
so

r

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

time [s]

0 1 2 3 4 5 6 7 8 9 10

−0.1

0

0.1

time [s]

u

A

B

C

D

E

F

�

Figure 5.2. Illustration of the limit cycle phenomena.

To calculate the amplitude in the controller output we note that the time the EGO
sensor output is constant corresponds to two times the transport delay. During this time
the controller output goes from its maximum to its minimum or vice versa, thus

up�p =
2tdel
Ti

e: (5.2)

Now we see that by choosing a bigger value of Ti we get a smaller amplitude in u and
therefore also in �. Unfortunately this only holds in theory and not practically due
to disturbances and dynamics in sensors and in the engine. The choice of Ti is also a
compromise between good transient behavior and small variations in � under stationary
conditions. Since we are mostly interested in the latter we choose a Ti such that choosing
a bigger Ti will not give signi�cantly smaller variations in � at stationarity.

Jump Back Control

To achieve better transient properties we also add a proportional part to the controller.
By choosing the proportional part in a smart way we can double the oscillation frequency
but still have the same oscillation amplitude. Consider Figure 5.1 and Figure 5.2 again.

The idea is to select K such that u is stepped back to 0 every time the EGO sensor
switches. This is illustrated in Figure 5.3. The switching behavior due to the transport
delay described for limit cycles also holds here. From Figure 5.3 one can see that the
proportional part, 2Ke, must be equal to the limit cycle amplitude in controller output,
up�p
2

, since the controller output is
up�p
2

just before A and 0 just after A. Note that
Equation 5.2 also holds now. The factor 2 in the proportional part is introduced because

5.1 Conventional Lambda Control 21

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

time [s]

0 1 2 3 4 5 6 7 8 9 10

−0.1

0

0.1

time [s]

u

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

time [s]

E
G

O
 s

en
so

r

A

�

Figure 5.3. Illustration of jump back control.

the signum function output changes with �2 when the EGO sensor switches. Thus, to
achieve jump back behavior we choose K as

K =
tdel
2Ti

: (5.3)

As we can see in Figure 5.3 this choice doubles the frequency without any increase in
amplitude.

Simulations

To �nd suitable starting values for the controller parameters to be used in the experi-
ments on the real engine we �rst make some simulations. The complete simulation model
is shown in Appendix B, Figure B.1. Note that the UEGO sensors in this model are
used only for validation purposes. The simulation results are summarized in Table 5.1.

It was found that Ti = 1000 was suitable. This value gives an average amplitude in �
of about 4 % around the stoichiometric value � = 1. The oscillation period is 1:1 s. Using
Equation 5.1 gives 0:275 s as an estimate of the transport delay. Remembering that the
delay during the simulations was 0.17 s we see that the engine and sensor dynamics are
not so fast that they can be neglected. However, when choosing the K value for jump
back control we use the estimated value tdel = 0:275 s in Equation 5.3. This results in a
too high K value giving a slight increase in the amplitude under stationary conditions
compared to limit cycle control, see Table 5.1.

The period for jump back control is 0:64 s i.e. it isn't halved compared to 1:1 s. From
Table 5.1 we also see that rms during transients is reduced but not as much as one might

22 5 Single Sensor Lambda Control

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity I 1:04 0:96 1:24 0:86 | | 2:30

1500 step I 1:25 0:80 1:49 0:73 1:5 1:6 8:51

1500 stationarity PI 1:06 0:94 1:24 0:86 | | 2:28

1500 step PI 1:17 0:82 1:40 0:74 1:1 1:2 6:33

Table 5.1. Summary of simulation results when using conventional lambda controllers.

have expected. These di�erences between theory and simulation depend mainly on the
fact that sensor and engine dynamics are not negligible in this particular case.

Implementation

To implement the control law, rewritten here for convenience, we use the method with
adjustment of the integral part, see [14].

u(t) = Ke(t) +
1

Ti

Z t

0

e(�)d�

By adjusting the integral part we get rid of the problem with anti wind up. The math-
ematical expression for adjustment of the integral part is given below.

In = In�1 +
Ts
Ti
en

vn = Ken + In

un =

8><
>:

umax if vn > umax

vn if umin � vn � umax

umin if vn < umin

In = In +
Ts
Tt
(un � vn)

In this thesis Tt is chosen as Tt = Ti i.e. tracking.
Now we give pseudo{code for the I and PI controller using an EGO sensor. By

checking if the �ltered input signal is below or above a reference value (here 0:5 V
corresponding to the switching point of the EGO sensor, see Figure 2.5) we make a relay
interpretation. Since we sample with 2000 Hz and control with 40 Hz we don't have to
enter the inner loop more than every 50:th time. This is done by checking the \control
time" ag. Note that Ts corresponds to the controllers sampling rate, 40 Hz.

ReadInput(y);
yf = Butterworth(y);
if (control time) then

e = 0;
if (ref � yf) > 0 then

e = 1;
else if (ref � yf) < 0 then

e = �1;
I = I + Ts

Ti
e;

v = Ke+ I;

5.1 Conventional Lambda Control 23

if (v > umax) then
u = umax;

else if (v < umin) then
u = umin;

else

u = v;
Out(u);
I = I + Ts

Tt
(u� v);

Update �lter states;
Wait;

The calculated output signal, u, is added to the basic injection time found in the fuel
map. This is done for all the following controller outputs. The complete code is listed
in Appendix C, void EGOcontroller.

Experimental Results

Now we describe the engine testings of I and PI (jump back) control using an EGO
sensor. To fully evaluate the controllers we study both stationary behavior and transient
response. Each �gure is plotted for the �rst operating point, 1500 rpm 60 kPa. In
Table 5.3 we summarize the results of both I and PI control using an EGO sensor.
During all tests the fuel map is locked. To determine Ti we start with the value given by
simulations (here 1000) and adjust it until the lambda peak to peak value is at minimum.
At 1500 rpm this happens when Ti = 2000. In Figure 5.4 and Figure 5.5 we see the
result of I control when using an EGO sensor. Notice that the mean value of �cp now
is 1 with uctuations of about � 6 %. In the behavior of �cp we see the limit cycles
and they are even more noticeable in the regulator output signal, u. The middle plot in
Figure 5.4 shows how the EGO sensor appears like a relay. Cylinder individual lambdas
are pictured in Figure 5.5. They range between 0:9 and 1:2 and di�er in level. Remember
the impossibility to eliminate di�erences between cylinders. This holds for all presented
single sensor controllers in this section.

We study transient response by introducing throttle angle changes, representing sud-
den acceleration or retardation. The steps result in changes in engine speed of approxi-
mately �250 rpm. In Figure 5.6 the actual engine response is shown together with the
output signal from the I regulator. Here T1 is around 2:5 s and T2 = 3:1 s. These values
depend on engine speed and higher speeds result in most cases in shorter settling times.

If we now consider the PI controller and chooseK as described in Equation 5.3 we can
take advantage of the jump back phenomena. First we need an estimate of the transport
delay, tdel, the delay between actual injection and sensor sensing. Using Equation 5.1 for
the operating points give the following estimates: 0:28 s at 1500 rpm, 0:27 s at 2250 rpm
and 0:17 s at 3000 rpm. Recall that the simulations showed that Equation 5.1 tended to
give a too high value for tdel resulting in a too high K value. Due to this fact we instead
use the following estimates for the transport delay in Equation 5.3, 0:2 s at 1500 rpm and
2250 rpm and 0:15 s at 3000 rpm. A lower value for a higher speed is due to faster exhaust
gas transport and faster engine cycles. For a complete list of used regulator parameters,
see Table 5.2. The results of engine testing, in stationarity, are shown in Figure 5.7. One
notices the higher frequency of the oscillations as expected. The frequency isn't doubled
and is a result from the fact that the engine and sensor don't have transfer functions

24 5 Single Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10
0.9

0.95

1

1.05

1.1

time [s]

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

time [s]

E
G

O
 s

en
so

r
[V

]

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

x 10
−4

time [s]

u
[s

]
�
c
p

Figure 5.4. EGO sensor and I control in stationarity. Top: Lambda at the conuence point.

Middle: Relay behavior of the EGO sensor. Bottom: Controller output signal with characteristic

limit cycle behavior.

Operating point Reg K Ti

1500 I | 2000

2250 I | 2000

3000 I | 750

1500 PI 1=20000 2000

2250 PI 1=20000 2000

3000 PI 1=10000 750

Table 5.2. Controller parameters used during conventional lambda control experiments.

equal to 1. When viewing the controller output signal we notice the characteristic jump
back behavior. The uctuations in lambda are still around �5 % and lambda has still a
mean value equal to 1. Making throttle changes resulted in Figure 5.8. Somewhat lower
amplitudes are achieved compared to the previous I controller.

We are now ready for a short summary of the results concerning conventional lambda
control. By studying Table 5.3 we see large deviations in �max and �min from the
reference value for single cylinders. This is promising for the multi sensor implementation
where we should be able to control single cylinders. Lambda values at the conuence
point don't di�er much between I and PI control. A slight but signi�cant improvement
is achieved by using PI control concerning the rms value. Still, the most noticeable
achievements are radically improved settling times at low engine speeds.

5.1 Conventional Lambda Control 25

0 1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

1.1

time [s]

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

1.2

time [s]

�1

�2

�3

�4

Figure 5.5. Cylinder individual lambda values in stationarity when controlling with an I con-

troller and an EGO sensor.

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity I 1:07 0:95 1:20 0:91 | | 2:69

2250 stationarity I 1:04 0:96 1:17 0:90 | | 1:69

3000 stationarity I 1:04 0:96 1:14 0:92 | | 1:84

1500 step I 1:30 0:84 1:52 0:78 2:5 3:1 11:20

2250 step I 1:38 0:87 1:77 0:82 2:3 1:8 11:50

3000 step I 1:21 0:88 1:39 0:82 1:0 0:8 5:60

1500 stationarity PI 1:07 0:95 1:21 0:91 | | 2:56

2250 stationarity PI 1:03 0:95 1:17 0:91 | | 1:66

3000 stationarity PI 1:03 0:96 1:13 0:92 | | 1:55

1500 step PI 1:27 0:86 1:48 0:81 1:6 1:6 8:66

2250 step PI 1:25 0:84 1:68 0:78 1:8 2:1 8:45

3000 step PI 1:18 0:86 1:32 0:81 0:8 1:0 5:07

Table 5.3. Summary of experimental results when using conventional lambda controllers.

26 5 Single Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

time [s]

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
x 10

−3

time [s]

u[
s]

�
c
p

Figure 5.6. EGO sensor and I control during transients. Top: Lambda at the conuence point.

Bottom: Controller output signal.

5.1 Conventional Lambda Control 27

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
x 10

−4

time [s]

u[
s]

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

time [s]

E
G

O
 s

en
so

r
[V

]

0 1 2 3 4 5 6 7 8 9 10

0.95

1

1.05

time [s]

�
c
p

Figure 5.7. EGO sensor and PI control in stationarity. Top: Lambda at the conuence point.

Middle: EGO sensor signal. Bottom: Jump back phenomena in controller output signal.

28 5 Single Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0
x 10

−3

time [s]

u[
s]

0 1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

time [s]

�
c
p

Figure 5.8. EGO sensor and PI control during transients. Top: Lambda at the conuence

point. Bottom: Controller output signal.

5.2 Lambda Control Using One UEGO Sensor 29

5.2 Lambda Control Using One UEGO Sensor

When using a UEGO sensor we are able to get absolute lambda values over the entire
engine operating range. More information about the process should lead to better con-
trolling results. Phenomenas like limit cycles and jump back are no longer present. By
not relying on a switching point we are able to give the regulator an input reference in
lambda not equal to 1, although �ref = 1 is used during both simulations and engine
testing.

The Control Structure

Figure 5.9 shows the control structure used in this section for lambda control with a
UEGO sensor. We use 1=� rather than � as an input signal because 1=� is proportional

u

K Ti

Engine
1/λref

1/λcp

λcp
ePI -stdel ÷

Figure 5.9. Structure of the single UEGO sensor controller.

to the amount of fuel (1=� = 14:57=(A=F) � F=constant, for a given throttle angle). A
calculated output signal a�ects all four fuel injectors and no consideration is taken to
cylinder individual di�erences.

The UEGO sensor characteristic, shown in Figure 2.5, is nonlinear but known and
invertible. Because it's better to use a linear input to a regulator we linearize the UEGO
sensor by applying the inverted function on the sensor signal. This is implemented in
the code by a volt2lambda function, see the beginning of Appendix C.

Simulations

By starting with simulations we get a feeling for the process and good starting values for
the experimental tests. For a sketch of the simulation model see Appendix B, Figure B.2.
To �nd suitable regulator parameters we apply Ziegler{Nichols rules of thumb. By
forcing the process into stable self oscillation we get K = 0:00405 and Ti = 108. These
parameters result in �cp variations of about �3 % around the stoichiometric value.
Improved rms values are achieved compared to simulations with the EGO sensor. Note
that the settling times (T1 and T2) are almost the same as for jump back control. The
simulation results are summarized in Table 5.4

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity PI 1:04 0:98 1:22 0:87 | | 1:50

1500 step PI 1:22 0:83 1:40 0:75 1:3 1:0 5:28

Table 5.4. Summary of simulation results when using a single UEGO sensor controller.

30 5 Single Sensor Lambda Control

Implementation

When controlling with the UEGO sensor the pseudo{code di�ers a little bit from the
one used during conventional lambda control. Instead of making a relay interpretation
we linearize the �ltered input signal using the volt2lambda function. Note that we are
now able to set a reference value, in lambda, for the controller to follow. Thus we get:

ReadInput(y);
yf = Butterworth(y);
if (control time) then

�cp = volt2lambda(yf);
e = 1

ref
� 1

�cp
;

I = I + Ts
Ti
e;

v = Ke+ I;
if (v > umax) then

u = umax;
else if (v < umin) then

u = umin;
else

u = v;
Out(u);
I = I + Ts

Tt
(u� v);

Update �lter states;
Wait;

Implementing the pseudo{code above gives us the complete C{code in Appendix C, void
UEGOcontroller.

Experimental Results

We start at 1500 rpm with no integral part and K set to a decade lower than in sim-
ulations, just to be on the safe side. Bringing the system into stable self oscillation by
increasing the K value give us Ziegler{Nichols regulator parameters. Since the rules
of thumb give an oscillatory behavior of the system we adjust K and Ti to values we
consider acceptable. Results of parameter tuning can be viewed in Table 5.5.

Operating point Reg K Ti

1500 PI 0:001 (0:0041) 200 (122)

2250 PI 0:00315 (0:00315) 200 (140)

3000 PI 0:00495 (0:00495) 200 (63)

Table 5.5. Controller parameters used during experiments with a single UEGO sensor controller.

Ziegler{Nichols parameters between brackets.

As before we start by showing the stationary behavior at 1500 rpm. Figure 5.10
tells us that we have improved �cp slightly, now it uctuates +6 and �3 % around the
reference value 1. The output signal from the controller shows neither limit cycles nor
jump back phenomena because it's adjusted by new continuous input values of lambda at

5.2 Lambda Control Using One UEGO Sensor 31

0 1 2 3 4 5 6 7 8 9 10

0.96

0.98

1

1.02

1.04

1.06

time [s]

0 1 2 3 4 5 6 7 8 9 10

−3

−2

−1
x 10

−4

time [s]

u[
s]

�
c
p

Figure 5.10. Single UEGO sensor controller in stationarity. Top: Lambda at the conuence

point. Bottom: Controller output signal.

each sampling interval. In Figure 5.11 we have the step response when making changes
in throttle angle position. Notice a lower maximum amplitude compared to Figure 5.6
and Figure 5.8. The settling times (T1 and T2) are about half the values achieved
by I control using an EGO sensor at low engine speeds. At higher engine speeds the
single UEGO controller tends to have longer settling times than the conventional lambda
controllers. Although the settling times increase the rms values decrease. For a summary
of experimental results study Table 5.6.

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity PI 1:06 0:97 1:21 0:92 | | 1:91

2250 stationarity PI 1:03 0:97 1:17 0:97 | | 1:00

3000 stationarity PI 1:03 0:98 1:13 0:95 | | 0:79

1500 step PI 1:19 0:88 1:38 0:83 1:3 1:4 5:66

2250 step PI 1:20 0:85 1:42 0:80 2:0 1:6 6:00

3000 step PI 1:17 0:89 1:31 0:84 2:0 1:3 4:76

Table 5.6. Summary of experimental results when using a single UEGO sensor controller.

32 5 Single Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

1.2

time [s]

0 1 2 3 4 5 6 7 8 9 10

−10

−8

−6

−4

−2

0

x 10
−4

time [s]

u[
s]

�
c
p

Figure 5.11. Single UEGO sensor controller during transients. Top: Lambda at the conuence

point. Bottom: Controller output signal.

5.3 Conclusions 33

5.3 Conclusions

We end this section by making some conclusions regarding conventional and single UEGO
sensor lambda control. The statements listed below are based on both simulation expe-
rience and experimental results on an actual engine.

� About the same uctuations at stationarity, �5 %.

� Considerably lowered (up to 50 %) rms value when using UEGO control.

� Faster settling times for UEGO sensor control when making steps in throttle angle
in most cases.

� Lower maximum deviations from reference value for UEGO control during tran-
sients.

� Lower component costs with EGO sensor.

� Some di�erences in regulator parameters between operating points. For EGO
control the K{values di�er by a factor 2 and the Ti{values with a factor 3 between
the operating points. For UEGO control the K{values di�er by a factor 5. Note
that for UEGO control the same Ti{value was used at all operating points.

� Using a UEGO sensor gives a possibility to have another reference signal than
� = 1. This can be utilized during e.g. acceleration and cold starts.

� No possibility to eliminate single cylinder di�erences with either method.

Almost every above stated argument is, not surprisingly, in favor of the UEGO based
control strategy.

34 6 Multi Sensor Lambda Control

6 Multi Sensor Lambda Control

In this section we will show one way to use all information from �ve lambda sensors to
perform cylinder individual lambda control. By a slight modi�cation of the regulator
code we also show how the control structure deals with an unknown o�set added to mea-
surements of the cylinder individual lambdas. This is done to prepare for an exchange of
UEGO measured lambda to lambda estimated by an ionization current A/F algorithm.

Previous we have only used one sensor located slightly downstream the conuence
point in the exhaust manifold to perform lambda control. The major bene�t of using
one sensor for each cylinder is the possibility to eliminate single cylinder di�erences.
Another bene�t is shorter transport delay between combustion and measurement. One
might wonder if there are any di�erences between cylinders in an engine? Yes there are!
When an engine is new di�erences are small and may be caused by e.g.non homogenous
heat distribution. Di�erences grow when the engine gets older, due to wear in fuel
injectors, inlet valves etc. In [5] the authors talk about di�erences up to �5% between
single cylinders. Since our test engine is quite new we simulate these di�erences by
adding an, for the regulator, \unknown" o�set to each cylinder injection time making
some cylinders rich and others lean.

6.1 The Control Structure

This control structure is developed to handle cylinder individual di�erences in lambda.
The structure is common for both the all information regulator and the regulator that
has an unknown o�set added to its measurements of lambda. As before we use the
linearization of UEGO sensors done by the volt2lambda function.

The regulator consists of four inner PI regulators, one for each cylinder, which can
be viewed as four separate inner loops, and one outer PI regulator, see Figure 6.1. The
inner loops force the cylinder individual lambdas to the same value and the outer loop
controls lambda at the conuence point to the desired reference value. The integral (I)
part in each regulator is needed for keeping the operating point and we use �ve integral
parts because �i = 1 for i = 1; : : : ; 4 may not always result in �cp = 1! We also use
proportional (P) parts to enhance performance during transients. The reason for not
using derivating (D) parts is that the system contains a lot of noise and it's a well
known fact that derivating a noisy signal tends to cause problems. Thus we have the
same principle control law as before

u(t) = Ke(t) +
1

Ti

Z t

0

e(�)d�:

The output signal from the outer regulator is provided as an input signal to the inner
loops. The outer regulator uses feedback from the UEGO sensor located downstream the
conuence point in the exhaust manifold. This signal together with the reference signal,
in lambda, are input signals to the outer regulator. Based on the di�erence between
reference signal and feedback lambda it creates an input signal for the four inner loops.
The inner loop regulators use reset anti wind up because they have limitations in their
allowed output signals of �2 ms.

When having more than one integrating part in a control structure one must con-
sider the fact that the integrating parts can start interacting with each other. It's best
understood with an example. Let's form the output signal from the �rst inner regulator

6.2 Implementation 35

+
_

+
_

+

_

e-sT

e-sT

e-sT

e-sTe-sTe-sT

PI

PI

PI

PI

Cyl 1

Cyl 2

Cyl 3

Cyl 4

+PI e-sτ

+
_

t1

t2

t3

t4

u

K Ti

K Ti

K Ti

K Ti

λ1

λ2

λ3

λ4

1/λcp

1/λref

Ky Tiy

Confluence point

÷

÷

÷

÷

÷

Figure 6.1. Structure of the multi sensor controller.

loop

t1 = K(u� 1

�1
) + I1:

Since u is the output signal from the outer regulator we can substitute u and get

t1 = K(Ky(
1

�ref
� 1

�cp
) + I � 1

�1
) + I1:

Rewritten we have

t1 = KKy(
1

�ref
� 1

�cp
)� K

�1
+KI + I1:

We notice that t1 depends on the sum of KI+I1 and not on the speci�c value of I or I1.
Therefore I and I1 can become very large without a�ecting the output signal t1. This
isn't a problem in theory, but when implemented on a microcomputer it might cause
bad numerical representation and overow. One can handle this problem by switching
integrating parts e.g.when I becomes larger than a speci�c value a part of I is subtracted
from I and added to I1 via the relationship KI + I1 = constant1. The opposite is of
course made when I1 becomes to large

8.

6.2 Implementation

Here we recall the �lter choices and sampling rate together with a pseudo{code common
for both the all information regulator and the regulator with an unknown o�set.

8Note that the relationship KI + Ii = constanti holds for i = 1; : : : ; 4 which means that a change in

one integrating part a�ects the remaining four.

36 6 Multi Sensor Lambda Control

The signals are, like before, �ltered through a �rst order analog low pass �lter with a
cut{o� frequency of 159 Hz. They are than sampled with 2000 Hz and digitally �ltered
with a second order low pass Butterworth �lter with a cut{o� frequency of 20 Hz. The
regulator works with a frequency of 40 Hz, therefore the �ltered signals are decimated
at this lower rate of 40 Hz.

The control structure tells us that we need four inner PI controllers and one outer
PI controller. The inner loop controllers are not allowed to adjust the basic injection
time with more than 2 ms, thus they have limitations in their maximum and minimum
output (t1; : : : ; t4) of �2 ms. In the outer regulator we don't have limitations in the
output signal since u is just a reference value for the inner controllers. No limitations
mean no need for reset anti wind up. For the same reason as before we let the input
signals to the outer regulator be the inverted values of �ref and �cp. Considering the
input signals to the inner controllers one may wonder why only �i is inverted and not
u. Let's say that the engine is running lean meaning a �cp > 1 resulting in a growing
reference value to the inner controllers, u grows. If ti = K(u�1=�i)+ Ii a larger u value
means larger ti resulting in enriched air fuel mixture. This is exactly what is desired!
Having this in mind we study the pseudo{code given below.

ReadInput([y; y1; y2; y3; y4]);
[yf ,y1f ,y2f ,y3f ,y4f]= Butterworth([y; y1; y2; y3; y4]);
if (control time) then

[�cp; �1; �2; �3; �4]= volt2lambda([yf ; y1f ; y2f ; y3f ; y4f]);

e = 1
ref

� 1
�cp

;

I = I + Ts
Tiy

e;

u = Kye+ I;

e1 = u� 1

�1
; /� Controller 1 �/

I1 = I1 +
Ts
Ti
e1;

v1 = Ke1 + I1;
if (v1 > tmax) then

t1 = tmax;
else if (v1 < tmin) then

t1 = tmin;
else

t1 = v1;
Out(t1);

e2 = u� 1
�2
; /� Controller 2 �/

I2 = I2 +
Ts
Ti
e2;

v2 = Ke2 + I2;
if (v2 > tmax) then

t2 = tmax;
else if (v2 < tmin) then

t2 = tmin;
else

t2 = v2;

6.2 Implementation 37

Out(t2);

e3 = u� 1
�3
; /� Controller 3 �/

I3 = I3 +
Ts
Ti
e3;

v3 = Ke3 + I3;
if (v3 > tmax) then

t3 = tmax;
else if (v3 < tmin) then

t3 = tmin;
else

t3 = v3;
Out(t3);

e4 = u� 1
�4
; /� Controller 4 �/

I4 = I4 +
Ts
Ti
e4;

v4 = Ke4 + I4;
if (v4 > tmax) then

t4 = tmax;
else if (v4 < tmin) then

t4 = tmin;
else

t4 = v4;
Out(t4);

I1 = I1 +
Ts
Tt
(t1 � v1);

I2 = I2 +
Ts
Tt
(t2 � v2);

I3 = I3 +
Ts
Tt
(t3 � v3);

I4 = I4 +
Ts
Tt
(t4 � v4);

Check integral part values and adjust if needed;
Update �lter states;
Wait;

Multi argument to Butterworth and volt2lambda means �ltering and converting each
input signal. The line \Check integral part values and adjust if needed" means that
when an integral part becomes to large subtraction of I values are done as explained in
Section 6.1. For the complete code see Appendix C, void lambdacontroller.

Since the pseudo{code for the controller with unknown o�set in lambda is much
the same as the code above we explain the extra lines needed instead of repeating the
entire pseudo{code when we study the multi sensor controller with o�set in the cylinder
individual lambdas. We simply expand the pseudo{code by adding an o�set estimation
line corresponding to Equation 6.1. Since the evaluation of ei contains �i a correction
for the o�set must be added. Thus we have:

...
if (control time) then

...

38 6 Multi Sensor Lambda Control

if (estimation time) then
o�set estimate = �1+�2+�3+�4

4
� �cp;

...
e1 = u� 1

�1�o�set estimate
;

...

Note that we can control how often an estimation shall occur by setting the estimation
time ag. The period between new estimations is determined by how fast and much
the o�set changes with time. For a discussion on how to choose estimation time see
\Estimating the O�set" in Section 6.4.

6.3 A Regulator Using all Available Information

As mentioned above we now utilize all available information from the �ve UEGO sensors.
First we study the results of simulations and later we summarize results of actual engine
experiments.

Simulations

Simulations are made to test the new control structure in an easy way. The simulation
models for both single cylinder control and multi sensor control can be found in Ap-
pendix B, Figure B.3 and Figure B.4. First we need to simulate single cylinder control
to �nd parameters for the four inner loops. Applying Ziegler{Nichols rules of thumb on
single cylinder control give K = 0:009 and Ti = 17. By comparing these values with
those for single UEGO sensor control of the complete engine, K = 0:00405 and Ti = 108,
we see that we now have a faster controller. This was expected because the transport de-
lay is now shorter, a �fth of tdel. Using the parameters we found for the inner loops and
applying Ziegler{Nichols rules of thumb on the outer loop give Ky = 0:45 and Tiy = 0:78.
Simulations with the above calculated parameters show a considerable improvement in
performance compared to single sensor control. The simulation results are summarized
in Table 6.1. We note that the multi sensor controller forces all cylinder lambdas to
have a common mean value, equal to 1, as desired. The most remarkable improvement
is a dramatic decrease in settling times, from about 1{1:5 s to 0:15 s. This depends
mostly on the fact that we now can observe a change in lambda earlier thanks to the
shorter transport delay. Another reason is that all cylinders now operate at the same
lambda value. We also note that rms during transients is smaller than under stationary
conditions for conventional lambda control!

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity PI 1:02 0:99 1:06 0:95 | | 0:87

1500 step PI 1:12 0:89 1:15 0:87 0:16 0:14 1:98

Table 6.1. Summary of simulation results when using a multi sensor controller.

6.3 A Regulator Using all Available Information 39

Experimental Results

By viewing the control structure we recognize the inner loop controllers to be four single
UEGO sensor controllers. If we let the input signal to one single sensor controller be
one of the four cylinder individual measured lambdas but still letting the output signal
a�ects all four fuel injectors we are able to �nd regulator parameters for the inner
loop controllers. By applying Ziegler{Nichols rules of thumb we �nd K and Ti at each
operating point. If we switch back to the multi sensor controller structure and use
the above found inner loop controller parameters we can tune the outer PI controller
parameters, Ky and Tiy. The simulations at 1500 rpm resulted in Ky = 0:45 and
Tiy = 0:78. Good starting values for engine testing are a 10:th of the K{values given by
simulations. Thus letting Ky = 0:045 and bringing the system into stable self oscillation
we �nd Ziegler{Nichols controller parameters. Not pleased with the behavior of the
system given by these parameters we �nd some more suitable parameters by manual
tuning. A complete list is given in Table 6.2.

Operating point Reg K Ti Ky Tiy

1500 PI 0:0045 (0:0045) 106 (106) 0:27 (0:54) 2 (1)

2250 PI 0:00315 (0:00315) 111 (111) 0:1 (0:5) 2 (1)

3000 PI 0:00405 (0:00405) 71 (71) 0:3 (0:63) 1 (0:54)

Table 6.2. Controller parameters used during experiments with a multi sensor controller.

Ziegler{Nichols parameters between brackets.

To be consistent we show experimental results at 1500 rpm, except for one �gure.
Studying Figure 6.2 we see (at top) an improved �cp behavior at stationarity. A �2 %
uctuation around the reference value is a large improvement compared to single sensor
control and can be explained by better single cylinder performance. From Figure 6.2
we also see that each cylinder has a mean level equal to the reference value, just as
expected from simulations. In Figure 6.3 the controllers outputs are illustrated. We
see that all outputs show a smooth behavior as desired in stationarity. Especially we
note that we can observe the introduced o�sets (in fuel injection times) in the inner
controllers outputs. Di�erent levels in the outputs are needed to eliminate the o�sets.

Comparing the transient response for single sensor and multi sensor control gives
the multi sensor control some advantages. Shorter settling times, especially at higher
engine speeds with T1 and T2 as short as 0:3 to 0:4 s (3000 rpm). Figure 6.4 illustrates
how single cylinder di�erences are eliminated. All four �i and �cp have almost identical
appearance. For a summary of engine testing see Table 6.3.

To verify the control properties and performance we study two more cases: regulator
start up and change of reference value. Figure 6.5 shows start up. Before the controller is
activated the engine is running in open loop with locked fuel map. The conuence point
lambda is around 0:96. After approximately four seconds the controller is activated and
within a second �cp stabilizes at the reference value. In Figure 6.5 one also notes how
cylinder three is lean before start up and at stoichiometry after controller activation.

To evaluate speed performance we make steps in reference value from rich (ref=0:95)
to lean (ref=1:05). The engine response is pictured in Figure 6.6. Engine speed is now
2250 rpm. The change in reference value occurs after 3:5 s resulting in a step response
in �cp.

40 6 Multi Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10
0.96

0.98

1

1.02

1.04

time [s]

0 1 2 3 4 5 6 7 8 9 10
0.96

0.98

1

1.02

1.04

time [s]

0 1 2 3 4 5 6 7 8 9 10
0.96

0.98

1

1.02

1.04

time [s]

�
c
p

Figure 6.2. Multi sensor controller in stationarity. Top: Lambda at the conuence point.

Middle: �1 solid and �2 dotted. Bottom: �3 solid and �4 dotted.

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity PI 1:03 0:98 1:04 0:97 | | 0:84

2250 stationarity PI 1:03 0:98 1:03 0:98 | | 0:80

3000 stationarity PI 1:03 0:98 1:04 0:97 | | 0:85

1500 step PI 1:18 0:89 1:16 0:87 0:5 0:8 3:64

2250 step PI 1:15 0:87 1:17 0:85 0:7 0:8 3:87

3000 step PI 1:22 0:87 1:24 0:86 0:4 0:3 3:55

Table 6.3. Summary of experimental results when using a multi sensor controller.

6.3 A Regulator Using all Available Information 41

0 1 2 3 4 5 6 7 8 9 10
−1

0

1
x 10

−3

time [s]

t1
 t2

0 1 2 3 4 5 6 7 8 9 10
−1

0

1
x 10

−3

time [s]

t3
 t4

0 1 2 3 4 5 6 7 8 9 10
0.98

1

1.02

time [s]

u

Figure 6.3. Multi sensor controller in stationarity. Top: Output from the outer controller.

Middle: t1 solid and t2 dashed. Bottom: t3 solid and t4 dashed.

42 6 Multi Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

time [s]

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

time [s]

0 1 2 3 4 5 6 7 8 9 10

0.9

1

1.1

time [s]

�
c
p

Figure 6.4. Multi sensor controller during transients. Top: Lambda at the conuence point.

Middle: �1 solid and �2 dotted. Bottom: �3 solid and �4 dotted.

6.3 A Regulator Using all Available Information 43

0 1 2 3 4 5 6 7 8
0.94

0.96

0.98

1

1.02

1.04

time [s]

0 1 2 3 4 5 6 7 8
0.9

0.95

1

1.05

1.1

1.15

time [s]

�
c
p

�
3

Figure 6.5. Turning on the multi sensor controller. Top: Lambda at the conuence point.

Bottom: Lambda in the third cylinder.

0 2 4 6 8 10 12
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

time [s]

�
c
p

Figure 6.6. Behavior of multi sensor controller when changing reference signal.

44 6 Multi Sensor Lambda Control

6.4 A Regulator with an Unknown O�set in Lambda

A problem occurs when an o�set in the cylinder individual lambdas is introduced

�i = �itrue + o�set for i = 1; : : : ; 4:

The o�set is common for all cylinders. Note that �cp still is an absolute measurement.
In this case it's a disadvantage to use 1

�i
instead of �i as inputs to the inner loops. It's

best understood by studying the following simple example. Let's see what happens with
the controller for cylinder 1. For convenience we assume that the reference value to the
outer controller is 1. First we study the case without o�set. In stationarity u, �1 and
�cp are all close to 1. A sudden change in �1 from 1 to 0:9 results in

e1 = u� 1

�1
= 1� 1

0:9
� �0:11:

Now we assume that the o�set is �0:5 i.e. �1 = 0:5 corresponds to stoichiometry. In
stationarity u is close to 2, �cp to 1 and �1 to 0:5. A sudden change in �1 from 0:5 to
0:4, same change as before, now results in

e1 = u� 1

�1
= 2� 1

0:4
= �0:5:

We note that e1 depends on the o�set which implies that the controller parameters also
depend on the o�set. This is an undesirable property since the o�set changes between
operating points. Fortunately there are at least three ways to get rid of the problem.

� Estimate the o�set and add it to the measured values.

� Use �i instead of
1
�i

as inputs to the controllers (similar calculations as above show
that this works).

� Use a robust controller.

If we choose to use �i instead of 1
�i

as inputs we loose the nice property: e being
proportional to the fuel injection time. Therefore we choose a controller which estimates
the o�set and adds it to the cylinder individual lambdas before the ei's are calculated.
Furthermore, if we choose parameter values in such a way that the controller becomes
robust a quite coarse approximation of the o�set will do.

In the future this controller will pick its measurements of the cylinder individual
lambdas from an ionization current algorithm and therefore we �rst study some pre-
liminary results from this algorithm to get a feeling for the o�set. In Table 6.4 values
from the algorithm are shown for some operating points and lambdas under stationary
conditions. In the table we see that the values decrease when lambda increases. This is
undesired from the controllers point of view. To get a more convenient behavior we can
for example invert the values or put a minus sign in front of them. If we invert the values
a mandatory non linearity is introduced and therefore we choose the latter method. We
also see from the table that for a given engine speed, the o�set is quite independent of
the manifold pressure and lambda value. Furthermore, we see that putting a minus sign
in front of the values gives an o�set with mean value approximately �1:2 and ampli-
tude 0:1. In the following experiments we let the o�set have a period of 5 s. The main
reason for choosing this period is that we want to get a proper time scale i.e.a time scale
in which we can distinguish o�set variations and lambda variations from each other.

6.4 A Regulator with an Unknown O�set in Lambda 45

speed [rpm] pman [kPa] � = 0:9 � = 1:0 � = 1:1

2000 60 0:22 0:13 0:10

2000 wot 0:25 0:15 0:08

4000 60 0:39 0:29 0:19

4000 wot 0:40 0:25 0:15

Table 6.4. Values from the ionization current algorithm, wot means wide open throttle.

Estimating the O�set

First we study what will happen if we have an o�set with amplitude 0:1 and period 5 s
and don't estimate the o�set at all. Note that the o�sets mean value in this case must
be close to 0 to avoid problems with instability (see above). Figure 6.7 shows that the
controller can't eliminate the o�set variation at all. From this experiment we see that

0 1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

time [s]

of
fs

et

0 1 2 3 4 5 6 7 8 9 10
0.9

0.95

1

1.05

1.1

time [s]

�
c
p

Figure 6.7. Multi sensor controller in stationarity with an o�set in the cylinder individual

lambdas. No estimation of the o�set is done. Top: Lambda at the conuence point. Bottom:

O�set in the cylinder individual lambdas.

the controller needs to estimate the o�set if it varies in time9, even if the mean value
is close to 0. It's a delicate problem to �nd a good method to estimate the o�set. One
has to consider e.g. how often and in which way the estimation shall be done. If we
estimate the o�set too often the controller will interpret true variations in lambda as
o�set variations. Since we are only interested in a quite coarse approximation of the

9Experience shows that the controller is able to eliminate very slow and small o�set variations with

mean value close to 0 without estimating the o�set.

46 6 Multi Sensor Lambda Control

o�set and we have a correct �cp value we estimate the o�set as

o�set estimate =
�1 + �2 + �3 + �4

4
� �cp: (6.1)

Assuming lambda at the conuence point being the mean value of the cylinder individual
lambdas isn't theoretically correct, see Section 4.5, but because we only need a quite
coarse approximation of the o�set it will do here.

Now we try to �nd some kind of rules telling us how often the estimation shall be
done. The o�set is from now on

o�set = �1:2 + 0:1sin(2�0:2t): (6.2)

Figure 6.8 shows the controllers performance when the controller estimates the o�set
every 0:2 s i.e. 10 times faster than the o�set frequency. We see that this rate for

0 1 2 3 4 5 6 7 8 9 10

0.95

1

1.05

time [s]

0 1 2 3 4 5 6 7 8 9 10

−1.3

−1.25

−1.2

−1.15

−1.1

time [s]

�
c
p

Figure 6.8. Multi sensor controller in stationarity with an o�set in the cylinder individual

lambdas. Estimation of the o�set is done every 0:2 s. Top: Lambda at the conuence point.

Bottom: Estimate of the o�set, solid, and o�set in the cylinder individual lambdas, dashed.

estimating the o�set isn't high enough. Further experiments show that the estimating
rate shall at least be 50 times the o�set variation frequency to get a satisfying behavior
in lambda. Of course a higher amplitude in the o�set requires a higher estimating rate
and vice versa. However, the mean value of the o�set doesn't have any inuence on
the estimating rate at all. Experience shows that if there is much noise in the lambda
measurements we can get an even better performance if we let the controller estimate
the o�set with the controllers sampling rate, 40 Hz. Having this in mind we let the
controller use this estimating rate in the following experiments.

6.4 A Regulator with an Unknown O�set in Lambda 47

Experimental Results

Since the controller nearly eliminates the o�sets inuence on the control performance
we can use the same controller parameter values as when no o�set was introduced, see
Table 6.2. Because the performance for the controller using all available information and
for this controller are much the same, we don't present any �gures showing the cylinder
individual lambdas and the controllers outputs. Instead we focus on the estimation
behavior in stationarity and during transients. However, the experimental results are
summarized in Table 6.5.

Operating point Reg �max cp �min cp �max sc �min sc T1 T2 rms %

1500 stationarity PI 1:03 0:98 1:03 0:98 | | 0:99

2250 stationarity PI 1:03 0:98 1:03 0:97 | | 0:87

3000 stationarity PI 1:02 0:98 1:03 0:97 | | 0:70

1500 step PI 1:15 0:89 1:15 0:88 0:6 0:6 3:74

2250 step PI 1:18 0:87 1:19 0:85 0:8 0:9 4:25

3000 step PI 1:19 0:87 1:20 0:84 0:5 0:4 3:53

Table 6.5. Summary of experimental results when using a multi sensor controller and the

cylinder individual lambdas containing an o�set.

Comparing the results in Table 6.5 with those in Table 6.3 show that this controller
has a slight increase in settling times and rms, in most cases. This was expected because
the estimate isn't perfect. However, the multi sensor controller is still much better than
the single sensor controllers even if an o�set is introduced.

Figure 6.9 illustrates the o�set estimate under stationary conditions when the engine
is running at the operating point 1500 rpm. One notes that the estimate never di�ers by
more than approximately 0:01 from the true value. We also see that the o�sets inuence
on lambda is eliminated as desired.

During transients the controller initially interprets the sudden change in cylinder in-
dividual lambdas as a change in o�set instead of a true change in lambda, see Figure 6.10
at 2:5 s and 6:75 s. The controller discovers however that the change in cylinder lambda
measurements corresponded to a true change when the exhaust gases reach the lambda
sensor at the conuence point. From Figure 6.10 we also see that the o�set estimate is
still close to the true o�set.

48 6 Multi Sensor Lambda Control

0 1 2 3 4 5 6 7 8 9 10
0.96

0.98

1

1.02

1.04

time [s]

0 1 2 3 4 5 6 7 8 9 10
−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

time [s]

�
c
p

Figure 6.9. Multi sensor controller in stationarity with an o�set in the cylinder individual

lambdas. Top: Lambda at the conuence point. Bottom: Estimate of the o�set, solid, and o�set

in cylinder the individual lambdas, dashed.

6.4 A Regulator with an Unknown O�set in Lambda 49

0 1 2 3 4 5 6 7 8 9 10
−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

time [s]

0 1 2 3 4 5 6 7 8 9 10

0.9

0.95

1

1.05

1.1

1.15

time [s]

�
c
p

Figure 6.10. Multi sensor controller during transients with an o�set in the cylinder individual

lambdas. Top: Lambda at the conuence point. Bottom: Estimate of the o�set, solid, and o�set

in the cylinder individual lambdas, dashed.

50 6 Multi Sensor Lambda Control

6.5 Conclusions

By making some conclusions we end this section. The statements listed below hold for
both simulations and experimental results.

� Possibility to eliminate single cylinder di�erences.

� Fluctuations at stationarity of �2 to +3 %.

� Low rms values at both stationarity and during transients.

� Short settling times. Especially at higher engine speeds.

� No signi�cant di�erence in performance between the all information controller and
the controller with an unknown sinus o�set in the measured cylinder individual
lambdas.

� The inner loop controllers use the same Ziegler{Nichols parameters which don't
di�er much between operating points. Outer controller parameters di�er at maxi-
mum a factor 3 between operating points.

� A too seldomly estimated o�set causes problems and an estimation rate of 50 times
the o�set frequency will do for an o�set amplitude of 0:1.

The conclusion to remember is primarily the ability to perform single cylinder lambda
control.

7 Controller Veri�cation 51

7 Controller Veri�cation

In all previous sections we have simulated an older engine by adding fuel injection time
o�sets to each cylinder making some cylinders rich and others lean. The additions were
made in the regulator code. Results were good and we were able to eliminate these
\software" di�erences between cylinders. To really verify the multi sensor controller we
change fuel injectors in two cylinders. Cylinder one has a fuel injector which injects
around 10 % more fuel. Cylinder two uses a fuel injector which injects around 18 %
less fuel than the standard fuel injectors still used for cylinder three and four. For more
details on the fuel injectors see Appendix A. Since the �ring order is 1{3{4{2 the modi�ed
cylinders are �red after each other. Without a controller the engine performance should
be jerky.

Experimental Results

During the engine testing we use no fuel injection time o�sets as we have done before.
Since the ionization current algorithm for measuring lambda isn't available at this stage
we simulate cylinder close lambda measurements with an unknown and varying o�set
as described in Equation 6.2. We show results from engine experiments at 3000 rpm
where we have a basic fuel injection time of about 8:5 ms. Since 20 % of 8:5 ms is
approximately 1:9 ms and very close to the maximum output signal (2 ms) allowed from
a controller we therefore expand the allowable output range to �3 ms.

In Figure 7.1 we see the single cylinder lambdas before and after activation of the
controller together with the controllers output signals. Before activation the engine is
running open loop with only a basic injection time of about 8:5 ms. After 4:5 s we
start the regulator. Within a second the single cylinder lambda values are stabilized
at the reference value. Lambda values before controller start up range from � = 0:85
to � = 1:15. These cylinder individual di�erences are severe and the engine probably
su�ers from mis�re. The engine sound, during open loop, wouldn't please any person,
even with a minimum experience of engine performance. After controller activation the
engine runs as with standard fuel injectors.

To verify the di�erences between standard fuel injectors and non standard we can
do as follows. After approximately 5:5 s the controllers output signals are stabilized. By
calculating the mean values of the controllers output signals between 5:5 and 10 s we
get the controller correction times given in Table 7.1. By adding basic injection time
and controller correction time we get the actual injection time, also shown in the table
below. The di�erence between the unmodi�ed cylinders and cylinder 2 is 21 % and for
cylinder 1 the di�erence is 9 %. These values are very close to the values speci�ed by
the manufacturer!

Cylinder # Basic injection Controller correction Actual injection

1 8586 �1375 7211

2 8586 1385 9971

3 and 4 8586 �754 7832

Table 7.1. Di�erences between cylinder injection times when using non standard fuel injectors.

All values are in �s.

52 7 Controller Veri�cation

0 1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

time [s]

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2
x 10

−3

time [s]

t1

t2

t3

t4

�1

�2

�3

�4

Figure 7.1. Top: Single cylinder lambdas before and after activation of the controller. Bottom:

Corresponding inner loop controllers output signals.

Conclusions

The multi sensor controller is able to eliminate di�erences between cylinders due to
di�erent fuel injectors. This means that one can lower the demands of accuracy in the
fuel injectors perhaps leading to lower manufacturing costs. Another advantage of single
cylinder control is the ability to register too large di�erences between cylinders and fuel
injectors. This can be used for engine diagnosis.

8 Extensions 53

8 Extensions

There are several possible extensions to this work, some of them are presented below.
The most interesting extension is an exchange to ionization current based measurements
of cylinder individual lambdas. Some problems to solve are how to �lter the signals,
further studies on how the o�set behaves and how to implement the algorithm in an
electronic control unit. The results of further o�set investigations can be utilized for a
more suitable o�set estimate. Perhaps with a forgetting factor to prevent interpreting
true signal changes as o�set variations.

Since the controller parameter values depend on the operating point there is a need
for some kind of adaptation for example gain scheduling or parameter adaptive control.

If it's possible to achieve a lower noise level one can introduce derivative parts in
the controllers. This might lead to LQG design and other model based controllers. A
future engine model probably includes feedforward from throttle angle to achieve better
transient response and compensation for sensor dynamics.

Another extension is to introduce learning control i.e.when changing operating point
the used values of the I parts are stored in a look up table. Next time this operating
point is used the initial I values are picked from the look up table. This gives a possibility
to achieve a faster control during transients.

54 9 Conclusions

9 Conclusions

The main goal with this project was to perform cylinder individual lambda feedback
control to eliminate di�erences between cylinders. This was achieved with a quite com-
plex, non model based, control structure including four inner parallel PI controllers and
one outer PI controller. The results are promising for an exchange to ionization current
measured lambdas with an unknown o�set. We found that the o�set shall be estimated
at least 50 times the o�set frequency for an o�set amplitude of 0:1. A higher amplitude
requires a higher estimation rate and vice versa.

The advantages with cylinder individual lambda control are mainly the ability to
compensate for di�erences between cylinders and fuel injectors. This can be used for
engine diagnosis, to compensate for wear or lowering the demands on engine components
e.g. fuel injectors. Other bene�ts are a faster lambda control during transients and a
more accurate stationarity control. The advantages for multi sensor lambda control with
an o�set compared with jump back control using an EGO sensor are:

� Between 50 and 60 % enhanced rms values under stationary conditions.

� Between 30 and 60 % enhanced rms values during transients.

� More than halved settling times.

� The ability to set a reference value, in lambda, for the controller to follow.

There are after all some disadvantages with the multi sensor lambda control, namely
higher component costs, more complexity and a requirement for more computational
power. We also noted a higher noise level in the cylinder close measurements than
at the conuence point which is due to turbulence and cycle to cycle variations. The
component costs are reduced if ionization current based measurements are used instead
of one UEGO sensor per cylinder.

Acceptable controller parameters are given by the Ziegler{Nichols rules of thumb. In
the inner loops these parameters are used unchanged and in the outer loop the values
are adjusted a factor 5, at the most, towards a slower controller. Good starting values
were given by simulations.

Di�erences in performance between operating points are small but di�erences in con-
troller parameters exist. For example the maximum di�erence, between outer controller
proportional parts, is a factor 3.

Simulations showed a larger improvement than the experimental results. The im-
provement is probably due to shorter transport delay, to the cylinder close sensors, than
in the actual engine. When using the ionization current algorithm no transport delay
exists which implies a possibility of even better lambda control.

References 55

References

[1] Simulink, User's Guide, 1992.

[2] G. Almkvist. Transient Air to Fuel Ratio Response in a Fuel Injected S.I. Engine.
PhD thesis, Chalmers University of Technology, March 1995.

[3] B. A. Ault, V. K. Jones, J. D. Powell, and G. F. Franklin. Adaptive Air{Fuel Ratio
Control of a Spark{Ignition Engine. SAE Paper, (940373), 1994.

[4] BOSCH. Automotive Electric/Electronic Systems. Robert Bosch GmbH, second
edition, 1995.

[5] K. J. Bush, N. J. Adams, S. Dua, and C. R. Markyvech. Automatic Control of
Cylinder by Cylinder Air{Fuel Mixture Using a Proportional Exhaust Gas Sensor.
SAE Paper, (940149), 1994.

[6] T. Glad and L. Ljung. Reglerteknik. Grundl�aggande teori. Studentlitteratur, second
edition, 1989.

[7] Y. Hasegawa, S. Akazaki, I. Komoriya, H. Maki, Y. Nishimura, and T. Hirota.
Individual Cylinder Air{Fuel Ratio Feedback Control Using an Observer. SAE
Paper, (940376), 1994.

[8] E. Hendricks, M. Jensen, P. Kaidantzis, P. Rasmussen, and T. Vesterholm. Transient
A/F Ratio Errors in Conventional SI Engine Controllers. SAE Paper, (930856),
1993.

[9] E. Hendricks and S. C. Sorenson. Mean Value Modelling of Spark Ignition Engines.
SAE Paper, (900616), 1990.

[10] J. B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill series in
mechanical engineering. McGraw-Hill, 1992.

[11] P. Kaidantzis, P. Rasmussen, M. Jensen, T. Vesterholm, and E. Hendricks. Robust,
Self-Calibrating Lambda Feedback for SI Engines. SAE Paper, (930860), 1993.

[12] L. Ljung and T. Glad. Modellbygge och simulering. Studentlitteratur, �rst edition,
1991.

[13] H. Maki, S. Akazaki, Y. Hasegawa, I. Komoriya, Y. Nishimura, and T. Hirota. Real
Time Engine Control Using STR in Feedback System. SAE Paper, (950007), 1995.

[14] L. Ljung m.. Digital Styrning { kursmaterial, 1995. 4 kompendier.

[15] R. C. Turin and H. G. Geering. Model{Based Adaptive Fuel Control in an SI
Engine. SAE Paper, (940374), 1994.

56 Appendix A: Laboratory Facility and Engine Speci�cations

Appendix A: Laboratory Facility and Engine Speci�cations

This appendix will describe the laboratory equipment, at the Division of Vehicular Sys-
tems at Link�oping University, including engine, dynamometer and computers.

Engine Speci�cations

The engine is a SAAB 2.3 L spark ignition standard engine equipped with extra sensors
for measurement of in cylinder pressure, ionization currents, air mass ow etc. The
electronic control unit is called Selma and is developed by Mecel AB. It controls, among
many other things, the fuel injectors and spark advance of each cylinder of the engine.
Selma is equipped with a CAN{bus10 interface making it possible to send and receive
information during engine tests. The general speci�cations of the engine are:

Engine type: 4 cylinder, four stroke, 16 valve engine with double
overhead camshafts and double balance shafts.

Displacement: 2:3 liters (2290 cm3).
Bore: 90 mm.
Stroke: 90 mm.
Firing order: 1{3{4{2.
Maximum engine power: 150 bhp (110 kW).
Maximum engine torque: 212 Nm.
Weight: � 160 kg.
Serial number: B2341:4N10M219569.

Dynamometer

To simulate di�erent driving conditions, engine speed and engine load, we need a dy-
namometer (brake). There are di�erent types of brakes and the one used in the labo-
ratory is a Dynasyn NT 85 servo motor/generator from Schenck. It can operate under
conditions up to engine torques of 150 Nm.

Computers

Besides Selma we use three standard PCs when the engine is running. All three com-
puters and Selma communicate via the CAN{bus, see Figure A.1. The �rst computer,
Hillman, contains a real time system using RTKernel software. It's on this computer our
controllers are executed. The injection time o�sets calculated by our controllers are send
via the CAN{bus to Selma. Hillman also runs a regulator controlling the brake (engine
load). From the second computer, Minx, we set reference values for throttle angle and
engine speed with help of a graphical user interface with slide bars. On SAAB, the
third computer, we can supervise variables used by Selma, for example basic injection
time, our calculated injection time o�set, actual injection time, engine speed and inlet
manifold absolute pressure. From SAAB we are also able to lock/unlock the fuel map
and ignition angle.

10Controller Area Network

Appendix A: Laboratory Facility and Engine Speci�cations 57

Computer: Hillman

Computer: SAAB

Computer: Minx

Computer: Selma Process: Process:

BrakeEngineElectronic
Control Unit

Real Time
System

Supervision
System

Supervision
System

A/D-card
Measured lambda

CAN-bus

Process:

Throttle Servo
Motor

Engine speed

Throttle angle

Figure A.1. Hardware setup.

Lambda Sensors

The sensors for measuring lambda are either the standard EGO sensor located 80 cm
downstream the exhaust manifold or up to �ve UEGO sensors of type TL{7111{W1 with
electronic controller TC{6000 from NGK. One of the UEGO sensors is located at the
same position as the standard EGO sensor. The remaining four are located close to the
cylinders measuring cylinder individual lambdas. They are located 12 cm downstream
the exhaust manifold. The measured values enter Hillman via a 12 bit A/D conversion
card (type RTI{815 from Analog Devices) with a resolution of 4:88 mV.

Fuel Injectors

There are di�erent types of fuel injectors. They di�er for example in spray pattern and
injected amount of fuel. All together we use three di�erent types of fuel injectors with
the same fuel pattern but di�erent injected amount of fuel. They are from BOSCH and
are listed below, see Table A.1. The standard fuel injector is type B. The other two

Type Serial number cm3=stroke

A 280150429 224:8

B 280150432 273:4

C 280150418 299:7

Table A.1. Fuel injector types used during engine testing.

are used to verify the regulators ability to eliminate di�erences between cylinders and
fuel injectors. When using type A we get around 18 % less fuel at each injection than
normally and with type C around 10 % more. When we in Section 7 use all three types
of fuel injectors cylinder 3 and 4 use standard type (B), cylinder 1 uses type C and
cylinder 2 type A.

58 Appendix B: Simulation Models

Appendix B: Simulation Models

cylinder3

cylinder4

cylinder2

cylinder1 +
+
+
+
fuel

+
+
+
+
air

1

throttle

EGO and filter

UEGO and filter

discrete PI

+
−

Sum

0

reference

lambda1

To Workspace1

u
To Workspace6

time
To Workspace7Clock

lambda3

To Workspace3

lambda4

To Workspace4

lambda2

To Workspace2

EGO

To Workspace5

lambdacp

To Workspace

UEGO and filter1

UEGO and filter2

UEGO and filter3

UEGO and filter4

Figure B.1. Simulation model for EGO sensor control.

cylinder3

cylinder4

cylinder2

cylinder1 +
+
+
+
fuel

+
+
+
+
air

1

throttle

discrete PI

+
−

Sum

lambda1

To Workspace1

u
To Workspace5

time
To Workspace6Clock

lambda3

To Workspace3

lambda4

To Workspace4

lambda2

To Workspace2

UEGO and filter1

UEGO and filter2

UEGO and filter3

UEGO and filter4

UEGO and filter

1/u

Fcn

lambdacp

To Workspace

1

lambdaref

Figure B.2. Simulation model for single UEGO sensor control.

Appendix B: Simulation Models 59

UEGO and filtercylinderdiscrete PI

1

lambdaref

+
−

Sum

1

throttle

1/u

Fcn

Clock

time
To Workspace1

lambda

To Workspace

Figure B.3. Simulation model for single cylinder control.

discrete PI

UEGO and filter1+
+
+
+
fuel

cylinder1discrete PI1

+
−

Sum1

1/u

Fcn1

+
−

Sum2

discrete PI3

discrete PI2

cylinder3

cylinder2

+
+
+
+
air

UEGO and filter2

UEGO and filter3

UEGO and filter4cylinder4discrete PI4

+
−

Sum4

1/u

Fcn4

lambda4

To Workspace4

lambda2

To Workspace2

lambda1

To Workspace1

lambda3

To Workspace3

UEGO and filter

lambdacp

To Workspace

+
−

Sum3

1/u

Fcn3

1

throttle

1/u

Fcn2

time
To Workspace6Clock

1/u

Fcn

+
−

Sum

+
+

Sum5

1

constant

u
To Workspace5

1

lambdaref

Figure B.4. Simulation model for multi UEGO sensor control.

60 Appendix C: Code

Appendix C: Code

static double volt2lambda(double volt) /* conversion from UEGO */

{ /* sensor signal to lambda */

double lambda;

double lambdavector[15] = {9.85, 10.3, 10.75, 11.2, 11.7, 12.15,

12.7, 13.25, 13.85, 14.57, 15.95, 17.6,

19.75, 22.35, 25.85};

int i;

i = floor((volt-1.875)*8);

if (i<0)

lambda = lambdavector[0];

else if (i>=14)

lambda = lambdavector[14];

else

lambda = lambdavector[i] + ((volt - 1.875 - i*0.125)/0.125)*

(lambdavector[i+1] - lambdavector[i]);

lambda = lambda/14.57; /* normalization */

return lambda;

} /* end volt2lambda */

void EGOcontroller()

{

Semaphore sem;

double Ts, Ti, u, to1, to2, to3, to4, K, Tt, lambdacp;

double umax, umin, ref, e, v, I, lambda1, lambda2, lambda3, lambda4;

double b[3] = {0.00094469, 0.00188938, 0.00094469}; /* 2:nd order Butter */

double a[3] = {1, -1.91119706, 0.91497583}; /* fc=20Hz fs=2000Hz */

double y[3] = {3, 3, 3};

double y0[3] = {0.5, 0.5, 0.5};

double y1[3] = {3, 3, 3};

double y2[3] = {3, 3, 3};

double y3[3] = {3, 3, 3};

double y4[3] = {3, 3, 3};

double yfilt[3] = {3, 3, 3};

double y0filt[3] = {0.5, 0.5, 0.5};

double y1filt[3] = {3, 3, 3};

double y2filt[3] = {3, 3, 3};

double y3filt[3] = {3, 3, 3};

double y4filt[3] = {3, 3, 3};

double *lambdacpvector;

double *EGOvector;

double *lambda1vector;

double *lambda2vector;

double *lambda3vector;

double *lambda4vector;

double *uvector;

double *timevector;

int fnum, log, mok, nsamp;

int i, m, n, ratio;

char fileName[20];

unsigned char message[3];

Port yPort, y0Port, y1Port, y2Port, y3Port, y4Port;

Appendix C: Code 61

FILE *file = NULL;

Time nextActivation;

sem = RegisterDouble(Ts);

RegisterDouble(Ti);

RegisterDouble(u);

RegisterDouble(to1);

RegisterDouble(to2);

RegisterDouble(to3);

RegisterDouble(to4);

RegisterDouble(K);

RegisterDouble(Tt);

RegisterDouble(lambdacp);

RegisterInt(fnum);

RegisterInt(log);

RegisterInt(mok);

RegisterInt(nsamp);

RegisterPort(yPort);

RegisterPort(y0Port);

RegisterPort(y1Port);

RegisterPort(y2Port);

RegisterPort(y3Port);

RegisterPort(y4Port);

/*

* Default values

*/

Ts = 0.0005; /* in sec */

Ti = 1e10;

to1 = 0; /* offset times in microsec */

to2 = 0;

to3 = 0;

to4 = 0;

K = 1;

Tt = Ti;

umax = 0.002; /* in sec */

umin = -0.002; /* in sec */

ref = 0.5; /* EGO sensor switch point (in Volt) */

I = 0.0;

lambdacpvector = malloc(500*sizeof(double));

EGOvector = malloc(500*sizeof(double));

lambda1vector = malloc(500*sizeof(double));

lambda2vector = malloc(500*sizeof(double));

lambda3vector = malloc(500*sizeof(double));

lambda4vector = malloc(500*sizeof(double));

uvector = malloc(500*sizeof(double));

timevector = malloc(500*sizeof(double));

fnum = 1;

log = 0;

mok = ((lambdacpvector)&&(EGOvector)&&(lambda1vector)&&

(lambda2vector)&&(lambda3vector)&&(lambda4vector)&&

(uvector)&&(timevector));

nsamp = 400;

i = 0;

m = 0;

n = 0;

ratio = 50; /* controller runs with 1/ratio of 1/Ts */

yPort = -1;

62 Appendix C: Code

y0Port = -1;

y1Port = -1;

y2Port = -1;

y3Port = -1;

y4Port = -1;

/*

* Wait for start

*/

RTKReceive(NULL, 0);

nextActivation = RTKGetTime();

RTKWait(sem);

while(True) {

RTKSignal(sem);

RTKDelayUntil(nextActivation);

RTKWait(sem);

nextActivation = RTKGetTime() + Ticks(Ts);

/* -------- code here ---------------- */

y[0] = Read(yPort);

y0[0] = Read(y0Port);

y1[0] = Read(y1Port);

y2[0] = Read(y2Port);

y3[0] = Read(y3Port);

y4[0] = Read(y4Port);

yfilt[0] = - a[1]*yfilt[1] - a[2]*yfilt[2] +

b[0]*y[0] + b[1]*y[1] + b[2]*y[2];

y0filt[0] = - a[1]*y0filt[1] - a[2]*y0filt[2] +

b[0]*y0[0] + b[1]*y0[1] + b[2]*y0[2];

y1filt[0] = - a[1]*y1filt[1] - a[2]*y1filt[2] +

b[0]*y1[0] + b[1]*y1[1] + b[2]*y1[2];

y2filt[0] = - a[1]*y2filt[1] - a[2]*y2filt[2] +

b[0]*y2[0] + b[1]*y2[1] + b[2]*y2[2];

y3filt[0] = - a[1]*y3filt[1] - a[2]*y3filt[2] +

b[0]*y3[0] + b[1]*y3[1] + b[2]*y3[2];

y4filt[0] = - a[1]*y4filt[1] - a[2]*y4filt[2] +

b[0]*y4[0] + b[1]*y4[1] + b[2]*y4[2];

i++;

if (i == ratio) {

lambdacp = volt2lambda(yfilt[0]);

lambda1 = volt2lambda(y1filt[0]);

lambda2 = volt2lambda(y2filt[0]);

lambda3 = volt2lambda(y3filt[0]);

lambda4 = volt2lambda(y4filt[0]);

e = 0.0;

if ((ref - y0filt[0]) > 0) /* relay interpretation */

e = 1;

else if ((ref - y0filt[0]) < 0)

e = -1;

I = I + ratio*Ts*e/Ti;

v = K*e + I;

if (v > umax)

u = umax;

Appendix C: Code 63

else if (v < umin)

u = umin;

else

u = v;

message[0] = (unsigned char)1; /* cylinder 1 */

((int)&message[1]) = (int)(u*1000000 + to1); /* in microsec */

SendCan(15, message);

message[0] = (unsigned char)2;

((int)&message[1]) = (int)(u*1000000 + to2);

SendCan(15, message);

message[0] = (unsigned char)3;

((int)&message[1]) = (int)(u*1000000 + to3);

SendCan(15, message);

message[0] = (unsigned char)4;

((int)&message[1]) = (int)(u*1000000 + to4);

SendCan(15, message);

I = I + ratio*Ts/Tt*(u - v);

if ((log == 1)&&(mok)) {

timevector[n] = SecPerTick*RTKGetTime();

lambdacpvector[n] = lambdacp;

EGOvector[n] = y0filt[0];

lambda1vector[n] = lambda1;

lambda2vector[n] = lambda2;

lambda3vector[n] = lambda3;

lambda4vector[n] = lambda4;

uvector[n] = u;

n++;

}

if (n == nsamp) {

sprintf(fileName, "d:EGO%d.txt", fnum);

file = fopen(fileName, "w");

fnum++;

if (file)

for (m=0;m<nsamp;m++)

fprintf(file,"%f %f %f %f %f %f %f %f\n",

lambdacpvector[m], EGOvector[m],

lambda1vector[m], lambda2vector[m],

lambda3vector[m], lambda4vector[m],

uvector[m], timevector[m]);

fclose(file);

file = NULL;

log = 0;

n = 0;

}

i = 0;

}

y[2] = y[1]; /* update filter states */

y[1] = y[0];

yfilt[2] = yfilt[1];

yfilt[1] = yfilt[0];

y0[2] = y0[1];

y0[1] = y0[0];

y0filt[2] = y0filt[1];

y0filt[1] = y0filt[0];

y1[2] = y1[1];

64 Appendix C: Code

y1[1] = y1[0];

y1filt[2] = y1filt[1];

y1filt[1] = y1filt[0];

y2[2] = y2[1];

y2[1] = y2[0];

y2filt[2] = y2filt[1];

y2filt[1] = y2filt[0];

y3[2] = y3[1];

y3[1] = y3[0];

y3filt[2] = y3filt[1];

y3filt[1] = y3filt[0];

y4[2] = y4[1];

y4[1] = y4[0];

y4filt[2] = y4filt[1];

y4filt[1] = y4filt[0];

/* -------- end code here ------------ */

}

} /* end EGOcontroller */

** Init files for EGOcontroller **

make e1(EGOcontroller)

e1.Ti=2000;

e1.K=0.00005;

e1.Tt=2000;

e1.to1=600; operating point 1500

e1.to2=250;

e1.to3=-500;

e1.to4=600;

e1.yPort=4;

e1.y0Port=9;

e1.y1Port=5;

e1.y2Port=6;

e1.y3Port=7;

make e2(EGOcontroller)

e2.Ti=2000;

e2.K=0.00005;

e2.Tt=2000;

e2.to1=500; operating point 2250

e2.to2=250;

e2.to3=-250;

e2.to4=250;

e2.yPort=4;

e2.y0Port=9;

e2.y1Port=5;

e2.y2Port=6;

e2.y3Port=7;

e2.y4Port=8;

make e3(EGOcontroller)

e3.Ti=750;

e3.K=0.0001;

e3.Tt=750;

e3.to1=500; operating point 3000

e3.to2=250;

Appendix C: Code 65

e3.to3=-500;

e3.to4=500;

e3.yPort=4;

e3.y0Port=9;

e3.y1Port=5;

e3.y2Port=6;

e3.y3Port=7;

e3.y4Port=8;

** Init files for EGOcontroller **

66 Appendix C: Code

void UEGOcontroller()

{

Semaphore sem;

double Ts, Ti, u, to1, to2, to3, to4, A, B, f, K, Tt, lambdacp;

double umax, umin, ref, e, v, I, lambda1, lambda2, lambda3, lambda4;

double b[3] = {0.00094469, 0.00188938, 0.00094469}; /* 2:nd order Butter */

double a[3] = {1, -1.91119706, 0.91497583}; /* fc=20Hz fs=2000Hz */

double y[3] = {3, 3, 3};

double y1[3] = {3, 3, 3};

double y2[3] = {3, 3, 3};

double y3[3] = {3, 3, 3};

double y4[3] = {3, 3, 3};

double yfilt[3] = {3, 3, 3};

double y1filt[3] = {3, 3, 3};

double y2filt[3] = {3, 3, 3};

double y3filt[3] = {3, 3, 3};

double y4filt[3] = {3, 3, 3};

double *lambdacpvector;

double *lambda1vector;

double *lambda2vector;

double *lambda3vector;

double *lambda4vector;

double *refvector;

double *uvector;

double *timevector;

int fnum, log, mok, nsamp;

int i, m, n, ratio;

char fileName[20];

unsigned char message[3];

Port yPort, y1Port, y2Port, y3Port, y4Port;

FILE *file = NULL;

Time nextActivation;

sem = RegisterDouble(Ts);

RegisterDouble(Ti);

RegisterDouble(u);

RegisterDouble(to1);

RegisterDouble(to2);

RegisterDouble(to3);

RegisterDouble(to4);

RegisterDouble(A);

RegisterDouble(B);

RegisterDouble(f);

RegisterDouble(K);

RegisterDouble(Tt);

RegisterDouble(lambdacp);

RegisterInt(fnum);

RegisterInt(log);

RegisterInt(mok);

RegisterInt(nsamp);

RegisterPort(yPort);

RegisterPort(y1Port);

RegisterPort(y2Port);

RegisterPort(y3Port);

RegisterPort(y4Port);

/*

* Default values

Appendix C: Code 67

*/

Ts = 0.0005; /* in sec */

Ti = 1e10;

to1 = 0; /* offset times in microsec */

to2 = 0;

to3 = 0;

to4 = 0;

A = 1; /* default ref = 1 */

B = 0;

f = 0;

K = 1;

Tt = Ti;

umax = 0.002; /* in sec */

umin = -0.002; /* in sec */

I = 0.0;

lambdacpvector = malloc(500*sizeof(double));

lambda1vector = malloc(500*sizeof(double));

lambda2vector = malloc(500*sizeof(double));

lambda3vector = malloc(500*sizeof(double));

lambda4vector = malloc(500*sizeof(double));

refvector = malloc(500*sizeof(double));

uvector = malloc(500*sizeof(double));

timevector = malloc(500*sizeof(double));

fnum = 1;

log = 0;

mok = ((lambdacpvector)&&(lambda1vector)&&(lambda2vector)&&

(lambda3vector)&&(lambda4vector)&&(refvector)&&

(uvector)&&(timevector));

nsamp = 400;

i = 0;

m = 0;

n = 0;

ratio = 50; /* controller runs with 1/ratio of 1/Ts */

yPort = -1;

y1Port = -1;

y2Port = -1;

y3Port = -1;

y4Port = -1;

/*

* Wait for start

*/

RTKReceive(NULL, 0);

nextActivation = RTKGetTime();

RTKWait(sem);

while(True) {

RTKSignal(sem);

RTKDelayUntil(nextActivation);

RTKWait(sem);

nextActivation = RTKGetTime() + Ticks(Ts);

/* -------- code here ---------------- */

y[0] = Read(yPort);

y1[0] = Read(y1Port);

68 Appendix C: Code

y2[0] = Read(y2Port);

y3[0] = Read(y3Port);

y4[0] = Read(y4Port);

yfilt[0] = - a[1]*yfilt[1] - a[2]*yfilt[2] +

b[0]*y[0] + b[1]*y[1] + b[2]*y[2];

y1filt[0] = - a[1]*y1filt[1] - a[2]*y1filt[2] +

b[0]*y1[0] + b[1]*y1[1] + b[2]*y1[2];

y2filt[0] = - a[1]*y2filt[1] - a[2]*y2filt[2] +

b[0]*y2[0] + b[1]*y2[1] + b[2]*y2[2];

y3filt[0] = - a[1]*y3filt[1] - a[2]*y3filt[2] +

b[0]*y3[0] + b[1]*y3[1] + b[2]*y3[2];

y4filt[0] = - a[1]*y4filt[1] - a[2]*y4filt[2] +

b[0]*y4[0] + b[1]*y4[1] + b[2]*y4[2];

i++;

if (i == ratio) {

lambdacp = volt2lambda(yfilt[0]);

lambda1 = volt2lambda(y1filt[0]);

lambda2 = volt2lambda(y2filt[0]);

lambda3 = volt2lambda(y3filt[0]);

lambda4 = volt2lambda(y4filt[0]);

ref = A + B*sin(2*3.141593*f*RTKGetTime()*SecPerTick);

e = (1/ref-1/lambdacp); /* e proportional to injection time */

I = I + ratio*Ts*e/Ti;

v = K*e + I;

if (v > umax)

u = umax;

else if (v < umin)

u = umin;

else

u = v;

message[0] = (unsigned char)1; /* cylinder 1 */

((int)&message[1]) = (int)(u*1000000 + to1); /* in microsec */

SendCan(15, message);

message[0] = (unsigned char)2;

((int)&message[1]) = (int)(u*1000000 + to2);

SendCan(15, message);

message[0] = (unsigned char)3;

((int)&message[1]) = (int)(u*1000000 + to3);

SendCan(15, message);

message[0] = (unsigned char)4;

((int)&message[1]) = (int)(u*1000000 + to4);

SendCan(15, message);

I = I + ratio*Ts/Tt*(u - v);

if ((log == 1)&&(mok)) {

timevector[n] = SecPerTick*RTKGetTime();

lambdacpvector[n] = lambdacp;

lambda1vector[n] = lambda1;

lambda2vector[n] = lambda2;

lambda3vector[n] = lambda3;

lambda4vector[n] = lambda4;

uvector[n] = u;

refvector[n] = ref;

n++;

}

Appendix C: Code 69

if (n == nsamp) {

sprintf(fileName, "d:UEGO%d.txt", fnum);

file = fopen(fileName, "w");

fnum++;

if (file)

for (m=0;m<nsamp;m++)

fprintf(file,"%f %f %f %f %f %f %f %f\n",

lambdacpvector[m], lambda1vector[m],

lambda2vector[m], lambda3vector[m],

lambda4vector[m], refvector[m],

uvector[m], timevector[m]);

fclose(file);

file = NULL;

log = 0;

n = 0;

}

i = 0;

}

y[2] = y[1]; /* update filter states */

y[1] = y[0];

yfilt[2] = yfilt[1];

yfilt[1] = yfilt[0];

y1[2] = y1[1];

y1[1] = y1[0];

y1filt[2] = y1filt[1];

y1filt[1] = y1filt[0];

y2[2] = y2[1];

y2[1] = y2[0];

y2filt[2] = y2filt[1];

y2filt[1] = y2filt[0];

y3[2] = y3[1];

y3[1] = y3[0];

y3filt[2] = y3filt[1];

y3filt[1] = y3filt[0];

y4[2] = y4[1];

y4[1] = y4[0];

y4filt[2] = y4filt[1];

y4filt[1] = y4filt[0];

/* -------- end code here ------------ */

}

} /* end UEGOcontroller */

** Init files for UEGOcontroller **

make u1(UEGOcontroller)

u1.Ti=200;

u1.K=0.001;

u1.Tt=200;

u1.to1=600; operating point 1500

u1.to2=250;

u1.to3=-500;

u1.to4=600;

u1.yPort=4;

u1.y1Port=5;

70 Appendix C: Code

u1.y2Port=6;

u1.y3Port=7;

u1.y4Port=8;

make u2(UEGOcontroller)

u2.Ti=200;

u2.K=0.00315;

u2.Tt=200;

u2.to1=500; operating point 2250

u2.to2=250;

u2.to3=-250;

u2.to4=250;

u2.yPort=4;

u2.y1Port=5;

u2.y2Port=6;

u2.y3Port=7;

u2.y4Port=8;

make u3(UEGOcontroller)

u3.Ti=200;

u3.K=0.00495;

u3.Tt=200;

u3.to1=500; operating point 3000

u3.to2=250;

u3.to3=-500;

u3.to4=500;

u3.yPort=4;

u3.y1Port=5;

u3.y2Port=6;

u3.y3Port=7;

u3.y4Port=8;

** Init files for UEGOcontroller **

Appendix C: Code 71

void lambdacontroller()

{

Semaphore sem;

double Ts, Tiy, Ti, u, t1, t2, t3, t4, to1, to2, to3, to4, A, B, f, Ky, K,

Tty, Tt, lambdacp, offsetestimate, offseta, offsetb, offsetf;

double tmax, tmin, ref, e, e1, e2, e3, e4, v1, v2, v3, v4,

I, I1, I2, I3, I4, lambda1, lambda2, lambda3, lambda4, offset;

double b[3] = {0.00094469, 0.00188938, 0.00094469}; /* 2:nd order Butter */

double a[3] = {1, -1.91119706, 0.91497583}; /* fc=20Hz fs=2000Hz */

double y[3] = {3, 3, 3};

double y1[3] = {3, 3, 3};

double y2[3] = {3, 3, 3};

double y3[3] = {3, 3, 3};

double y4[3] = {3, 3, 3};

double yfilt[3] = {3, 3, 3};

double y1filt[3] = {3, 3, 3};

double y2filt[3] = {3, 3, 3};

double y3filt[3] = {3, 3, 3};

double y4filt[3] = {3, 3, 3};

double *lambdacpvector;

double *lambda1vector;

double *lambda2vector;

double *lambda3vector;

double *lambda4vector;

double *refvector;

double *uvector;

double *t1vector;

double *t2vector;

double *t3vector;

double *t4vector;

double *timevector;

double *offsetvector;

double *offsetestimatevector;

int fnum, log, mok, nsamp, offsetflag, regflag, eratio;

int i, m, n, p, ratio;

char fileName[20];

unsigned char message[3];

FILE *file = NULL;

Port yPort, y1Port, y2Port, y3Port, y4Port;

Time nextActivation;

sem = RegisterDouble(Ts);

RegisterDouble(Tiy);

RegisterDouble(Ti);

RegisterDouble(u);

RegisterDouble(t1);

RegisterDouble(t2);

RegisterDouble(t3);

RegisterDouble(t4);

RegisterDouble(to1);

RegisterDouble(to2);

RegisterDouble(to3);

RegisterDouble(to4);

RegisterDouble(A);

RegisterDouble(B);

RegisterDouble(f);

RegisterDouble(Ky);

RegisterDouble(K);

72 Appendix C: Code

RegisterDouble(Tty);

RegisterDouble(Tt);

RegisterDouble(lambdacp);

RegisterDouble(offsetestimate);

RegisterDouble(offseta);

RegisterDouble(offsetb);

RegisterDouble(offsetf);

RegisterInt(fnum);

RegisterInt(log);

RegisterInt(mok);

RegisterInt(nsamp);

RegisterInt(offsetflag);

RegisterInt(regflag);

RegisterInt(eratio);

RegisterPort(yPort);

RegisterPort(y1Port);

RegisterPort(y2Port);

RegisterPort(y3Port);

RegisterPort(y4Port);

/*

* Default values

*/

Ts = 0.0005; /* in sec */

Tiy = 1e10;

Ti = 1e10;

to1 = 0; /* offset times in microsec */

to2 = 0;

to3 = 0;

to4 = 0;

A = 1; /* default ref = 1 */

B = 0;

f = 0;

Ky = 1;

K = 1;

Tty = Tiy;

Tt = Ti;

offsetestimate = 0;

offseta = 0; /* default no offset */

offsetb = 0;

offsetf = 0;

tmax = 0.002; /* in sec */

tmin = -0.002; /* in sec */

I = 1.0;

I1 = 0.0;

I2 = 0.0;

I3 = 0.0;

I4 = 0.0;

lambdacpvector = malloc(500*sizeof(double));

lambda1vector = malloc(500*sizeof(double));

lambda2vector = malloc(500*sizeof(double));

lambda3vector = malloc(500*sizeof(double));

lambda4vector = malloc(500*sizeof(double));

refvector = malloc(500*sizeof(double));

uvector = malloc(500*sizeof(double));

t1vector = malloc(500*sizeof(double));

t2vector = malloc(500*sizeof(double));

t3vector = malloc(500*sizeof(double));

Appendix C: Code 73

t4vector = malloc(500*sizeof(double));

timevector = malloc(500*sizeof(double));

offsetvector = malloc(500*sizeof(double));

offsetestimatevector = malloc(500*sizeof(double));

fnum = 1;

log = 0;

mok = ((lambdacpvector)&&(lambda1vector)&&(lambda2vector)&&

(lambda3vector)&&(lambda4vector)&&(refvector)&&

(uvector)&&(t1vector)&&(t2vector)&&(t3vector)&&

(t4vector)&&(timevector)&&(offsetvector)&&(offsetestimatevector));

nsamp = 400;

offsetflag = 0;

regflag = 1; /* default controller on */

eratio = 1; /* default to estimate offset every 1/ratio of 1/Ts */

i = 0;

m = 0;

n = 0;

p = 0;

ratio = 50; /* controller runs with 1/ratio of 1/Ts */

yPort = -1;

y1Port = -1;

y2Port = -1;

y3Port = -1;

y4Port = -1;

/*

* Wait for start

*/

RTKReceive(NULL, 0);

nextActivation = RTKGetTime();

RTKWait(sem);

while(True) {

RTKSignal(sem);

RTKDelayUntil(nextActivation);

RTKWait(sem);

nextActivation = RTKGetTime() + Ticks(Ts);

/* -------- code here ---------------- */

y[0] = Read(yPort);

y1[0] = Read(y1Port);

y2[0] = Read(y2Port);

y3[0] = Read(y3Port);

y4[0] = Read(y4Port);

yfilt[0] = - a[1]*yfilt[1] - a[2]*yfilt[2] +

b[0]*y[0] + b[1]*y[1] + b[2]*y[2];

y1filt[0] = - a[1]*y1filt[1] - a[2]*y1filt[2] +

b[0]*y1[0] + b[1]*y1[1] + b[2]*y1[2];

y2filt[0] = - a[1]*y2filt[1] - a[2]*y2filt[2] +

b[0]*y2[0] + b[1]*y2[1] + b[2]*y2[2];

y3filt[0] = - a[1]*y3filt[1] - a[2]*y3filt[2] +

b[0]*y3[0] + b[1]*y3[1] + b[2]*y3[2];

y4filt[0] = - a[1]*y4filt[1] - a[2]*y4filt[2] +

b[0]*y4[0] + b[1]*y4[1] + b[2]*y4[2];

i++;

74 Appendix C: Code

if (i == ratio) {

lambdacp = volt2lambda(yfilt[0]);

lambda1 = volt2lambda(y1filt[0]);

lambda2 = volt2lambda(y2filt[0]);

lambda3 = volt2lambda(y3filt[0]);

lambda4 = volt2lambda(y4filt[0]);

offset = offseta +

offsetb*sin(2*3.141593*offsetf*RTKGetTime()*SecPerTick);

if (offsetflag){

p++;

if (p >= eratio){

offsetestimate = ((lambda1 + offset) + (lambda2 + offset)

+ (lambda3 + offset) + (lambda4 + offset))/4 - lambdacp;

p = 0;

}

}

if (regflag){

ref = A + B*sin(2*3.141593*f*RTKGetTime()*SecPerTick);

e = (1/ref-1/lambdacp);

I = I + ratio*Ts*e/Tiy;

u = Ky*e + I;

e1 = (u - 1/(lambda1 + offset - offsetestimate)); /* cyl 1 */

I1 = I1 + ratio*Ts*e1/Ti;

v1 = K*e1 + I1;

if (v1 > tmax)

t1 = tmax;

else if (v1 < tmin)

t1 = tmin;

else

t1 = v1;

message[0] = (unsigned char)1;

((int)&message[1]) = (int)(t1*1000000 + to1);

SendCan(15, message); /* cyl 1 */

e2 = (u - 1/(lambda2 + offset - offsetestimate)); /* cyl 2 */

I2 = I2 + ratio*Ts*e2/Ti;

v2 = K*e2 + I2;

if (v2 > tmax)

t2 = tmax;

else if (v2 < tmin)

t2 = tmin;

else

t2 = v2;

message[0] = (unsigned char)2;

((int)&message[1]) = (int)(t2*1000000 + to2);

SendCan(15, message); /* cyl 2 */

e3 = (u - 1/(lambda3 + offset - offsetestimate)); /* cyl 3 */

I3 = I3 + ratio*Ts*e3/Ti;

v3 = K*e3 + I3;

if (v3 > tmax)

t3 = tmax;

else if (v3 < tmin)

t3 = tmin;

else

t3 = v3;

Appendix C: Code 75

message[0] = (unsigned char)3;

((int)&message[1]) = (int)(t3*1000000 + to3);

SendCan(15, message); /* cyl 3 */

e4 = (u - 1/(lambda4 + offset - offsetestimate)); /* cyl 4 */

I4 = I4 + ratio*Ts*e4/Ti;

v4 = K*e4 + I4;

if (v4 > tmax)

t4 = tmax;

else if (v4 < tmin)

t4 = tmin;

else

t4 = v4;

message[0] = (unsigned char)4;

((int)&message[1]) = (int)(t4*1000000 + to4);

SendCan(15, message); /* cyl 4 */

I1 = I1 + ratio*Ts/Tt*(t1 - v1);

I2 = I2 + ratio*Ts/Tt*(t2 - v2);

I3 = I3 + ratio*Ts/Tt*(t3 - v3);

I4 = I4 + ratio*Ts/Tt*(t4 - v4);

if (abs(I)>10){

I1 = I1 + K*I/2;

I2 = I2 + K*I/2;

I3 = I3 + K*I/2;

I4 = I4 + K*I/2;

I = I/2;

printf("I too big\n");

}

if (abs(I1)>10){

I = I + I1/(2*K);

I2 = I2 - I1/2;

I3 = I3 - I1/2;

I4 = I4 - I1/2;

I1 = I1/2;

printf("I1 too big\n");

}

if (abs(I2)>10){

I = I + I2/(2*K);

I1 = I1 - I2/2;

I3 = I3 - I2/2;

I4 = I4 - I2/2;

I2 = I2/2;

printf("I2 too big\n");

}

if (abs(I3)>10){

I = I + I3/(2*K);

I1 = I1 - I3/2;

I2 = I2 - I3/2;

I4 = I4 - I3/2;

I3 = I3/2;

printf("I3 too big\n");

}

if (abs(I4)>10){

76 Appendix C: Code

I = I + I4/(2*K);

I1 = I1 - I4/2;

I2 = I2 - I4/2;

I3 = I3 - I4/2;

I4 = I4/2;

printf("I4 too big\n");

}

}

else {

message[0] = (unsigned char)1; /* send only offset times */

((int)&message[1]) = (int)(to1);

SendCan(15, message);

message[0] = (unsigned char)2;

((int)&message[1]) = (int)(to2);

SendCan(15, message);

message[0] = (unsigned char)3;

((int)&message[1]) = (int)(to3);

SendCan(15, message);

message[0] = (unsigned char)4;

((int)&message[1]) = (int)(to4);

SendCan(15, message);

}

if ((log == 1)&&mok) {

timevector[n] = SecPerTick*RTKGetTime();

lambdacpvector[n] = lambdacp;

lambda1vector[n] = lambda1;

lambda2vector[n] = lambda2;

lambda3vector[n] = lambda3;

lambda4vector[n] = lambda4;

uvector[n] = u;

t1vector[n] = t1;

t2vector[n] = t2;

t3vector[n] = t3;

t4vector[n] = t4;

refvector[n] = ref;

offsetvector[n] = offset;

offsetestimatevector[n] = offsetestimate;

n++;

}

if (n == nsamp) {

sprintf(fileName, "d:lambda%d.txt", fnum);

file = fopen(fileName, "w");

fnum++;

if (file)

for (m=0;m<nsamp;m++)

fprintf(file,"%f %f %f %f %f %f %f %f %f %f %f %f %f %f\n",

lambdacpvector[m], lambda1vector[m],

lambda2vector[m], lambda3vector[m],

lambda4vector[m], refvector[m],

uvector[m], t1vector[m],

t2vector[m], t3vector[m], t4vector[m],

timevector[m], offsetvector[m],

offsetestimatevector[m]);

fclose(file);

file = NULL;

log = 0;

Appendix C: Code 77

n = 0;

}

i = 0;

}

y[2] = y[1]; /* update filter states */

y[1] = y[0];

yfilt[2] = yfilt[1];

yfilt[1] = yfilt[0];

y1[2] = y1[1];

y1[1] = y1[0];

y1filt[2] = y1filt[1];

y1filt[1] = y1filt[0];

y2[2] = y2[1];

y2[1] = y2[0];

y2filt[2] = y2filt[1];

y2filt[1] = y2filt[0];

y3[2] = y3[1];

y3[1] = y3[0];

y3filt[2] = y3filt[1];

y3filt[1] = y3filt[0];

y4[2] = y4[1];

y4[1] = y4[0];

y4filt[2] = y4filt[1];

y4filt[1] = y4filt[0];

/* -------- end code here ------------ */

}

} /* end lambdacontroller */

** Init files for lambdacontroller **

make l1(lambdacontroller)

l1.Ti=106;

l1.Tiy=2;

l1.K=0.0045;

l1.Ky=0.27;

l1.Tt=106;

l1.Tty=2;

l1.to1=600; operating point 1500

l1.to2=250;

l1.to3=-500;

l1.to4=600;

l1.yPort=4;

l1.y1Port=5;

l1.y2Port=6;

l1.y3Port=7;

l1.y4Port=8;

make l2(lambdacontroller)

l2.Ti=111;

l2.Tiy=2;

l2.K=0.00315;

l2.Ky=0.1;

l2.Tt=111;

l2.Tty=2;

l2.to1=500; operating point 2250

78 Appendix C: Code

l2.to2=250;

l2.to3=-250;

l2.to4=250;

l2.yPort=4;

l2.y1Port=5;

l2.y2Port=6;

l2.y3Port=7;

l2.y4Port=8;

make l3(lambdacontroller)

l3.Ti=71;

l3.Tiy=1;

l3.K=0.00405;

l3.Ky=0.3;

l3.Tt=71;

l3.Tty=1;

l3.to1=500; operating point 3000

l3.to2=250;

l3.to3=-500;

l3.to4=500;

l3.yPort=4;

l3.y1Port=5;

l3.y2Port=6;

l3.y3Port=7;

l3.y4Port=8;

** Init files for lambdacontroller **

