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Abstract
Control and diagnosis of complex systems demand accurate information of the system
state to enable e�cient control and to detect system malfunction. Physical sensors are
expensive and some quantities are hard or even impossible to measure with physical
sensors.�is has made model-based estimation an attractive alternative.
Model based observers are sensitive to errors in the model and since the model

complexity has to be kept low to enable use in real-time applications, the accuracy of
the models becomes limited. Further, modeling is di�cult and expensive with large
e�orts on model parametrization, calibration, and validation, and it is desirable to design
robust observers based on existing models. An experimental investigation of an engine
application shows that the model have stationary errors while the dynamics of the engine
is well described by the model equations. �is together with frequent appearance of
sensor o�sets have led to a demand for systematic ways of handling operating point
dependent stationary errors, also called biases, in both models and sensors.
Systematic design methods for reducing bias in model based observers are devel-

oped.�e methods utilize a default model, described by systems of ordinary di�erential
equations (ODE) or di�erential algebraic equations (DAE), and measurement data. A
low order description of the model de�ciencies is estimated from the default model and
measurement data, which results in an automatic model augmentation.�e idea is then
to use the augmented model in observer design, yielding reduced stationary estimation
errors compared to an observer based on the default model.�ree main results are: a
characterization of possible model augmentations from observability perspectives, a
characterization of augmentations possible to estimate from measurement data, and a
robustness analysis with respect to noise and model uncertainty.
An important step is how the bias is modeled, and two ways of describing the bias

are analyzed.�e �rst is a random walk and the second is a parameterization of the bias.
�e latter can be viewed as an extension of the �rst and utilizes a parameterized function
that describes the bias as a function of the operating point of the system. By utilizing
a parameterized function, a memory is introduced that enables separate tracking of
aging and operating point dependence. �is eliminates the trade-o� between noise
suppression in the parameter convergence and rapid change of the o�set in transients.
Direct applications for the parameterized bias are online adaptation and o�ine calibration
of maps commonly used in engine control systems.

�e methods are evaluated on measurement data from heavy duty diesel engines. A
�rst order model augmentation is found for an ODE of an engine with EGR and VGT.
By modeling the bias as a random walk, the estimation error is reduced by 50% for a
certi�cation cycle. By instead letting a parameterized function describe the bias, better
estimation accuracy and increased robustness is achieved. For an engine with intake
manifold throttle, EGR, and VGT and a corresponding sti� ODE, experiments show
that it is computationally bene�cial to approximate the fast dynamics with instantaneous
relations, transforming the ODE into a DAE. A main advantage is the possibility to
use more than 10 times longer step lengths for the DAE based observer, without loss of
estimation accuracy. By augmenting the DAE, an observer that achieves a 55 % reduction
of the estimation error during a certi�cation cycle is designed.
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Populärvetenskaplig Sammanfattning
I dagens samhälle har transporter av olika slag en betydande roll och på land står den
tunga lastbilen för en majoritet av dessa. Samtidigt som transportbehovet ständigt ökar
ställer både emissionslagsti�ning och kunder allt högre krav påminskade utsläpp och
minskad bränsleförbrukning. För dieselmotorer är det utsläpp av partiklar, det vill säga
oförbränt bränsle och smörjoljerester, samt utsläpp av kväveoxider och koldioxid som
omfattas. Kraven innebär både att hålla förbränningsemissionerna nere under normal
dri� och att fel som medför risk för förhöjda emissioner måste kunna upptäckas, vilket
driver den tekniska utvecklingen framåt. Med introduktionen av nya tekniska lösningar
samt hårdare emissionskrav följer behovet av tillförlitlig information ommotorns interna
tillstånd för att möjliggöra robust och säker dri�. Till exempel behöver information om
tryck, temperatur och syre/bränsle-förhållande tas fram.
Dock är det inte ekonomiskt eller praktiskt möjligt att använda fysiska sensorer för

att mäta alla dessa parametrar. Det här har medfört introduktionen av matematiska
modeller över motorn, vilka tillsammans med tillgängliga sensorer används för att ta
fram information om motorns tillstånd. Modellerna baseras o�a på fysikaliska samband
för exempelvis energi- och massbevarande. De är dyra att utveckla då det tar tid att
ta fram de matematiska samband som krävs. Dessutom tillkommer aktiviteter såsom
parametrisering, kalibrering och validering. Oavsett hur mycket tid som läggs på att
ta fram modellen kommer den aldrig att bli perfekt. I de fall där kraven påmodellens
beräkningskomplexitet är höga blir detta extra tydligt, vilket är fallet i de �esta realtidsap-
plikationer. Resultatet från modellen kommer alltså att avvika från de verkliga värdena,
och det blir viktigt att reducera fel i skattningar som uppkommit till följd av fel i modellen.
Det har därför vuxit fram ett intresse för metoder som möjliggör användning av

modeller behä�ade med fel för att beräkna motorers interna tillstånd med hög nog-
grannhet. Sy�et med forskningen som presenteras i avhandlingen är därför att utveckla
systematiska metoder som, utan att involvera extra modellering, höjer noggrannheten
i skattningar baserade påmodeller som innehåller fel. Metoderna hjälper ingenjören,
som har god kännedom om systemet, modellen och dess brister, att svara på frågan om
kompensation för ett visst fel är möjlig, samtidigt som metoderna kan peka ut andra
potentiella felkällor. Ur metoderna fås en felbeskrivning som används för att utöka mod-
ellen. Genom att nyttja denna modell, utökad med felbeskrivning, kan information om
motorns tillstånd beräknas med högre noggrannhet. I motorstyrenheter är dessutom
uppslagstabeller för att beskriva komplicerade fenomen där fysikaliska modeller saknas
vanligt förekommande. Dessa är o�a i behov av kontinuerlig anpassning för att kom-
pensera för dri�, åldrande och slitage av motorns fysiska komponenter och de framtagna
metoderna lämpar sig väl även för detta ändamål.
Sammanfattningsvis förenar metoderna teori, som garanterar tillförlitliga och sta-

bila skattningar, med industriella tillämpningar såsom anpassning av uppslagstabeller.
Metoderna är utvärderade med hjälp av mätdata från standardiserade certi�eringscykler
insamlade i motorprovceller på Scania i Södertälje. I dessa cykler uppvisas minskningar
av skattningsfel på i medel omkring 50%. Reduktionen av skattningsfel möjliggör nog-
grann reglering, med minskade emissioner och bränsleförbrukning, samt förbättrar
möjligheterna att upptäcka små fel.
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Chapter 1

Introduction

Transportation is of vital importance in the modern economy and a major part of these
transportations are carried out by trucks, e.g., in Europe and United States road vehicles
account for more than 70% of the inland freight transport (Noreland, 2008; Bradley,
2000). As a consequence, a major part of the emissions from the vehicular tra�c is from
trucks. It is therefore necessary to reduce the emissions and fuel consumption.
Stricter emission legislations and customer demands on low fuel consumption drive

the technical development of engines and force new solutions to be introduced. To cope
with reduced emission limits on diesel engines, for example intake manifold throttle,
exhaust gas recirculation (EGR), and variable geometry turbine (VGT) are introduced, see
Figure 1.1.�is technical development, with increased system complexity and tightened
requirements from customers and legislators, increase the demands on the control
and diagnosis systems. Two examples of important quantities that signi�cantly a�ect
the emissions from diesel engines are: air to fuel ratio (λ) and EGR-fraction (xegr).
�e increased demands on the control and diagnosis systems, increase the required
information quality of λ and xegr. At the same time it is desirable to have as few and
cheap sensors in the system as possible to keep the cost down.�is has made estimation
an important and active research area, see e.g. Colin et al. (2009); Lino et al. (2008);
García-Nieto et al. (2008); Andersson and Eriksson (2004).
Model based estimators are o�en used to achieve cost-e�ective estimation with

high accuracy. �is has driven the development of new models that are suitable for
estimator design.�ese models have to be simple enough to be evaluated in real time,
by for example an engine control unit (ECU), and at the same time describe the system
behavior accurately enough for the estimation task. Development of these models is a
delicate balance between computational complexity of themodel and howwell it manages
to describe the true system. Typically, a large engineering e�ort is spent on modeling,
o�en combining �rst law physics and system identi�cation techniques.
In all model based control or diagnosis systems, the performance of the system is

directly dependent on the accuracy of the model. In addition, as stated above, modeling

1



2 Chapter 1. Introduction

(a) Exhaust gas recirculation (EGR) system (b) Variable geometry turbine (VGT)

Figure 1.1: Technical solutions introduced on modern diesel engines to be able to ful�ll
the stricter emission legislations. Courtesy Scania CV AB.

is time consuming and even if much time is spent on physical modeling, there will
always be errors in the model.�e causes of these model errors can be quite varying;
the model accuracy can depend on the operating point (Zimmerschied and Isermann,
2010), changes in ambient conditions (Won et al., 1998), the aging of components (Rupp
and Guzzella, 2010), etc., all of which a�ect the system properties and hence the model
errors. Model de�ciencies are especially common if there are constraints on the model
complexity, as is the case in most real time applications. Another scenario is that a model
developed for some purpose, for example control, exists but needs improvement before it
can be used for other purposes, for example diagnosis.�at is, there exists a lot of models,
on which much modeling time is spent, that needs improvement before they can be used
in an estimation application. A common situation is that, while the dynamics is well
captured by the model, there are stationary errors, possibly operating point dependent
(Höckerdal et al., 2008). Herea�er, these already available models will be called default
models. Since modeling is time consuming, and hence expensive, methods that enable
use of these default models in estimation without involving extensive modeling e�orts
are needed.
In engine control and diagnosis, it is crucial to have good and unbiased estimates.

In model based diagnosis (Ceccarelli et al., 2009) the true system is monitored using
residuals, formed as the di�erence between estimated and measured signals. If the
residual exceeds a threshold, it is concluded that something is wrong (Blanke et al., 2003;
Isermann, 2011). In engine control (Stefanopoulou et al., 2000; Ortner and del Re, 2007;
Plianos and Stobart, 2011), one objective is to control torque output while keeping the
emissions below legislated levels and the fuel consumption as low as possible (Guzzella
and Amstutz, 1998). Here, unbiased estimates are crucial since fuel consumption and
emissions are o�en in con�ict with each other.�e hard constraints on the emissions
force the engine operation away from the most fuel e�cient operating point. With
reduced stationary estimation errors the control system can balance closer to the fuel
optimal operating point without the risk of violating the emission limits. For diesel
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engines this is especially di�cult since the control system normally does not have any
feedback information from a λ or nitrogen oxides (NOx) sensor and have to rely on
estimated signals instead (Wang, 2008). In both cases, biased estimates impair the
performance.
Finally, the development of engines and engine control systems involves extensive

testing, both during the development of the control strategies and the engine calibration.
Data is collected in engine test cells as well as in laboratory vehicles.�is means that
it is fairly easy to obtain system measurements. �e sensors available are o�en both
production sensors, that will be available on the commercial product, and high grade
laboratory sensors added to enable extra monitoring.�ese laboratory sensors provide
valuable information that can be used during the development phase, allowing estimation
of model errors not possible to �nd with only production sensors.

1.1 Problem Statement
�e objective is to develop systematic methods for reducing estimation errors given a
default model and measurement data, without involving extensive modeling e�orts.

�e starting point is a default model and measurement data from the true system.
From this it can be determined if the model describes the system su�ciently well or if it
has to be modi�ed to be applicable to the intended estimation application.�e focus is
on adjustments with respect to operating point dependent stationary estimation errors.
If it is concluded that the model su�ers from too large stationary errors and cannot

be used for estimation in its current state, then the methods developed for reducing
stationary estimation errors can be applied.�e ideas in the developed methods are to
augment the defaultmodel with bias states that compensate for operating point dependent
stationary errors. �is augmented model can then be used in any suitable estimator
design to get an adaptive estimator with reduced stationary errors compared to using
the default model directly.

1.2 Thesis Outline
�e theme throughout the thesis is the successive development of methods for compen-
sating operating point dependent stationary model errors in the design of estimators.
�e studied topics originate from estimation of gas �ows in heavy duty diesel engines
using existing mean value engine models (MVEM) (Hendricks, 1986; Jensen et al., 1991;
Hendricks, 2001; Eriksson et al., 2002), referred to as default models.
Chapter 2 is based on Höckerdal et al. (2008) and describes an important estimation

problem from the automotive industry. It gives an overview of the heavy duty diesel
engine andmodel used for evaluation throughout the dissertation.�is particular system
is used to analyze how the quality of a sensor signal can be improved as well as how the
quality can be assessed.�e chapter illustrates the e�ect that a model with stationary
errors has on the estimates when used in estimator design. Chapter 2 ends with a
compilation of the contributions and their relation to other scienti�c work.



4 Chapter 1. Introduction

Papers A and E, based on Höckerdal et al. (2009) and Höckerdal et al. (Submitted),
present systematic methods for bias compensation in model based estimator design for
ordinary di�erential equation (ODE) and di�erential algebraic equation (DAE) models
respectively.�emethods apply the idea of introducing extra states, q ∈ Rnq , for adjusting
the stationary operating point of the model, i.e. x○ → (x○ − Aqq), according to

ẋ = f (x − Aqq, u) (1.1a)
q̇ = 0 (1.1b)
y = h(x), (1.1c)

where x ∈ Rnx are the states, u ∈ Rnu the inputs, and y ∈ Rn y the outputs. In (1.1a), q
represent the underlying cause of the bias, Aq its a�ection of the original states, x, and
Aqq shi�s the stationary point of the model. Automatized methods for estimating low
order augmentations, Aq , from measurement data are developed.
An operating point dependent bias can exhibit both fast and slow dynamics, arising

from, for example, operating point dependent bias (Zimmerschied and Isermann, 2010)
and aging (Rupp and Guzzella, 2010). Papers B and C address this problem in an
integrated way by modeling the bias as a parameterized function,

qfcn(x , u, θ), (1.2)

of known states and/or inputs instead of as an extra state

ẋ = f (x , u, qfcn(x , u, θ))
θ̇ = 0
y = h(x).

(1.3)

�e idea with a construction like (1.3) is to capture the operating point dependence of
the bias by the parametrization (1.2), and use the parameters, θ ∈ Rnθ , introduced as
new states, to track the aging. Paper B presents a solution and establishes necessary
conditions for observability in the case the parameterized function is described by 1-D
linear interpolation and an interpolation variable that is measured. Paper C extends the
results with a simulation example using a 2-D cubic spline interpolation.
Paper D analyzes computational issues that arise when designing an observer for a

sti� ODE system, containing both slow and fast dynamics, and especially what can be
gained by approximating the fast dynamics with instantaneous relations resulting in a
DAE system, i.e.

ẋslow = f (xslow , xfast , u)
ẋfast = g(xslow , xfast , u)

⇒
ẋslow = f (xslow , xfast , u)
0 = g(xslow , xfast , u)

.

In an observer, e�cient and accurate solution of these continuous-time models is neces-
sary and has to be done in discrete-time.�e properties of forward and backward Euler
for discretization of the continuous-time model are also analyzed.
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1.3 Contributions
�e main contributions are:

⋆ �e experimental analysis of model and sensor errors of heavy duty diesel engines
[Chapter 2].

⋆ Methods for estimating a low order bias compensating model augmentation using
a default ODE or DAE model and measurements from the true system [Papers A
and E].

⋆ Necessary and su�cient conditions for model augmentations that maintain sys-
tem observability for ODE:s and DAE:s [Paper A,�eorem 4.2, and Paper E,
�eorem 4.2].

⋆ Parametrization of all model augmentations that are possible to obtain with the
proposed estimation algorithms [Paper A,�eorem 5.1].

⋆ An algorithm for engine map adaptation with variable parameter update rate
[Paper B], with an additional 2-D cubic spline application example [Paper C].

⋆ An analysis of the bene�ts of approximating fast dynamics with instantaneous
relations, transforming an ODE model into a DAE model, for EKF:s [Paper D].

1.4 Publications
�e dissertation is based on the work presented in the following publications.

Journal Papers
Erik Höckerdal, Erik Frisk, and Lars Eriksson. EKF-based Adaptation of Look-Up
Tables with an Air Mass-Flow Sensor Application. In: Control Engineering Practice,
19(5):442–453, 2011. [Paper B]

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer Design and Model Aug-
mentation for Bias Compensation With a Truck Engine Application. In: Control
Engineering Practice, 17(3):408–417, 2009. [Paper A]

Erik Höckerdal, Lars Eriksson, and Erik Frisk. Air mass-�ow measurement and
estimation in diesel engines equipped with EGR and VGT. In: SAE Int. J. Passeng.
Cars – Electron. Electr. Syst., 1(1):393–402, 2008.

Submitted

Erik Höckerdal, Erik Frisk, and Lars Eriksson. DAE and ODE Based EKF:s and
their Real-Time Performance Evaluated on a Diesel Engine. In: IEEE Transactions
on Industrial Electronics, 2011. [Paper D]
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Book Chapter
Erik Höckerdal, Lars Eriksson, and Erik Frisk. O�- and On-Line Identi�cation of
Maps Applied to the Gas Path in Diesel Engines. In: Identi�cation for Automotive
Systems, Linz, Accepted for Publication, 2010. [Paper C]

Conference Papers
Erik Höckerdal, Erik Frisk, and Lars Eriksson. Model Based Engine Map Adap-
tation Using EKF. In: 6th IFAC Symposium on Advances in Automotive Control.
Munich, Germany, 2010.

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer Design and Model Aug-
mentation for Bias Compensation Applied to an Engine. IFAC World Congress.
Seoul, Korea, 2008.

Erik Höckerdal, Lars Eriksson, and Erik Frisk. Air mass-�ow measurement and
estimation in diesel engines equipped with EGR and VGT. In: Electronic Engine
Controls. SAE Technical Paper 2008-01-0992. SAE World Congress, Detroit, USA,
2008.

Submitted

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Bias Reduction in DAE Estimators
by Model Augmentation: Observability Analysis and Experimental Evaluation. In:
50th IEEE Conference on Decision and Control and European Control Conference,
Orlando, Florida, 2011. [Paper E]



Chapter 2

Model Error Compensation

As a prelude to the publications, some additional background is given with the purpose of
putting the contributions into context. Even though the developed methods are general
and applies to non-linear ODE andDAEmodels they are evaluated on automotive engine
examples. A main challenge in engine control and diagnosis is accurate estimation of
the internal state of the engine and was brie�y described in Chapter 1 together with the
contributions.�is chapter elaborates on this, pointing out the necessity of unbiased
estimates in engine control, and presenting some common properties of ordinary engine
models. An overview of the heavy duty diesel engine with intake manifold throttle, EGR,
and VGT is given in Section 2.1. Section 2.2 presents important control variables, the
necessity of unbiased estimates, and the need for continuous adaptation in engine control
and diagnosis, while Section 2.3 brie�y describes the e�ect of biased models in model
based estimation. Section 2.4 presents the publications with focus on the contributions
and their relation to other scienti�c work.

2.1 Application Example
�is section serves as an overview of the system and the default models that are used
for evaluation of the developed methods throughout the thesis. It also introduces the
nomenclature, and presents important control quantities used in the control of diesel
engines. Even though the methods developed are not specially devoted to engine appli-
cations, they are all applied and evaluated on the gas �ow system of a Scania heavy duty
diesel engine, like the one presented in Figure 2.1.

�e defaultmodels used in the evaluations of themethods are developed inWahlström
and Eriksson (Accepted for publication), and Wahlström and Eriksson (2010).�e main
di�erence between the models are that the latter includes an intake manifold throttle,
accompanied by an extra state for the intercooler pressure, and a state for the exhaust
manifold temperature.

7
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Figure 2.1: Cutaway view of the Scania inline six cylinder engine with VGT and EGR
used for evaluation. Courtesy Scania CV AB.

Schematics of the more complex model from Wahlström and Eriksson (2010) is
presented in Figure 2.2, where most of the modeled variables are presented. Control
inputs to the model are injected amount of fuel uδ and the positions of EGR, VGT, and
throttle valves; uegr, uvgt, and uth. �e engine speed ne is used as a parameterization
input beside the control inputs, and thus the engine model can be expressed in state
space form as

ẋ = f (x , u, ne)
y = h(x).

In these applications ne is an input to themodel which is due to the fact that themodeling
is focused on the gas �ows and does not include modeling of the produced torque
and drive line. States are pressures in the intercooler, intake manifold and exhaust
manifold, pic, pim and pem, turbine speed ωt, and exhaust manifold temperature, Tem.
Also presented are modeled signals for the, compressor mass-�owWc, throttle mass-�ow
Wth, EGR mass-�owWegr, mass-�ow into the engineWei, mass-�ow out of the engine
Weo, and turbine mass-�owWt. Outputs from the model are the states, pim, pem, pic,
and ωt, and the compressor mass-�owWc. Equations (2.1) and (2.2) presents a summary
of the model and measurement equations and more details are presented in Appendix A.

ṗim = fpim(pim , pem , pic , Tem , uδ , uegr , uth , ne)
ṗem = fpem(pim , pem , ωt , Tem , uδ , uegr , uvgt , ne)
ṗic = fpic (pim , pic , ωt , uth )
ω̇t = fωt ( pem , pic , ωt , Tem , uvgt )

Ṫem = fTem(pim , pem , ωt , Tem , uδ , uegr , uvgt , ne)

(2.1)



2.2. Gas Flow Measurement 9

pic

Wt

TurbineIntake
manifold

ωt

EGR cooler

Wegr

uegr

EGR valve

pim

Wth
uth

Intake throttle

Exhaust
manifold

Compressor

uvgt

uδ

Cylinders

Wei pemWeo

Tem

ne

Intercooler

Wc

Figure 2.2: Schematic of the diesel engine model (Wahlström and Eriksson, 2010) with
intake manifold throttle, EGR, and VGT, showing model states (pim, pem, pic, ωt, and
Tem), control inputs (uegr, uvgt, uδ , and uth), parametrization input (ne), and �ows
between the di�erent components (Wc,Wth,We gr ,Wei,Weo, andWt). Rectangles with
rounded corners represent control volumes.

y1 = pim (2.2a)
y2 = pem (2.2b)
y3 = pic (2.2c)
y4 = ωt (2.2d)
y5 =Wc (pic , ωt) (2.2e)

�e data used is collected in engine test cells at Scania CV AB in Södertälje, Sweden,
and a detailed sensor setup that includes accuracy and placement of the sensors used is
presented in Appendix B.

2.2 Gas FlowMeasurement
�e air mass-�ow into the engine is a central quantity in the engine control systems and
is hence o�en measured. It is used for many purposes and in�uences both the engine
performance and emissions, and it is therefore essential to have an air mass-�ow signal of
good quality. One important issue with the air mass-�ow sensor is its characteristics and
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Figure 2.3: Air mass-�ow sensor calibration curve with 12 grid points.

long term stability. To analyze this, two questions are addressed: how does the sensor
characteristic evolve over time, and how does it vary between engine con�gurations?
To answer these questions, systematic engine test cell measurements have been

conducted on a limited range of air mass-�ow sensors over the span of several weeks.
A central piece of information is a sensor calibration curve that has been recorded and
stored for all days and tests.�e data is analyzed with respect to day-to-day variations,
aging, and changes between con�gurations.�e calibration curve r(Wraw) is de�ned by

r(Wraw) =
Wref
Wraw

− 1, (2.3)

whereWref is a reference sensor mass-�ow sensor andWraw is the raw engine air mass-
�ow measurement. �e calibration curve is found by comparing the production air
mass-�ow sensorWraw to a reference mass-�ow sensorWref, for a long series of engine
measurements.�e reference sensorWref is available only in the engine test cell for the
purpose of accurately being able to measure the air mass-�ow into the engine, and has an
uncertainty of less than 1 % and a response time of 12ms. It is mounted on a straight pipe
in the test cell, where the air mass-�ow over the cross section of the pipe is orthogonal to
the sensor and cylindrically symmetric, and is considered to give accurate measurements
of the air mass-�ow.�e calibration curve is implemented as a lookup-table consisting
of 12 grid points, see Figure 2.3 for an example. Using this calibration curve to adjust the
raw sensor measurement an adapted sensor signal can be computed

Wadapt = (1 + r(Wraw))Wraw, (2.4)

which gives a more accurate estimate of the true air mass-�ow into the engine.
�e air mass-�ow signal is needed for computations of air to fuel ratio, λ, and EGR-

fraction, xegr. Both are important quantities that signi�cantly a�ect the emissions.�e
air to fuel ratio is de�ned as

λ = Wair
Wfuel (A/F)s

,
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whereWair is the air mass-�ow into the engine,Wfuel the fuel mass-�ow, and (A/F)s the
stoichiometric air to fuel ratio. In diesel engine control it is important to keep λ above
a certain limit, λsmoke lim, to avoid generating smoke. Normally, when λ is greater than
λsmoke lim,Wfuel is determined by the desired torque. However when the desired torque
forces λ to λsmoke lim, the control law enters a mode whereWfuel is proportional toWair,
(Wahlström, 2006).�is is particularly important during transients where the torque
demand is high, e.g. during acceleration. In these cases, an error in the air mass-�ow
signal results in either creation of smoke or reduced torque output.�e other important
quantity, is the EGR-fraction de�ned as

xegr =
Wtot −Wair

Wtot
,

whereWtot is the total gas mass-�ow into the engine, i.e.Wair +Wegr.�e xegr is used in
the engine control to reduce the NOx emissions, and is governed by the EGR-valve and
the VGT position.�e following small example gives a rough estimate of the consequence
of an incorrect air mass-�ow measurement for the control of xegr.

Example 1 Assume that the engine control system controls xegr to 30% based on the air
mass-�ow sensor and that the air mass-�ow sensor signal is incorrect and readsWair⋅0.9.
�at is,

xegr =
Wtot −Wair ⋅ 0.9

Wtot
= 30%.

�en the true fresh air-fraction would become

(1 − 0.3) ⋅Wtot =Wair ⋅ 0.9 ⇒ Wair =
1
0.9

⋅ (1 − 0.3) ⋅Wtot ≈ 0.78 ⋅Wtot,

and thereby the true xegr ≈ 22%, which would have a signi�cant e�ect on the NOx
emissions (Heywood, 1988). �at is, in this example the control system controls the
engine to run with less EGR than needed to ful�ll the legislated NOx levels. ◇

An analogous analysis can be made for λ close to λsmoke lim which further supports the
statement that an accurate estimate of the air mass-�ow is important.
Both λ and xegr are important for the emissions and the air mass-�owWair is central

in their control. Hence, it is important to have a high quality measurement or estimation
of the air mass-�ow. Note that the xegr estimate also depends onWtot, which is computed
using the volumetric e�ciency of the engine and is, by experience, considered to be
accurate.

2.2.1 AirMass-Flow Sensor Variations
Calibration curves from two diesel engines, one inline 6 cylinder and oneV8, are gathered
from test runs in an engine test cell. 13 calibration curves are collected over a total time
of about two weeks for the 6 cylinder engine and 21 calibration curves over four weeks
for the V8 engine. Figure 2.4 presents the typical appearance of a calibration curve, the
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upper for a 6 cylinder engine and the lower for a V8 engine.�ese calibration curves are
used to analyze the quality of the air mass-�ow sensor.

�e di�erence between engine con�gurations can be seen by comparing the upper
and lower plot in Figure 2.4 and Figure 2.5, where Figure 2.4 presents the day-to-day
variations of the calibration curve and Figure 2.5 presents the trend of the four grid
points, θ2, θ5, θ8, and θ11, in the calibration curves, see Figure 2.3.
Figure 2.4 shows that the day-to-day variations are quite large, especially for the V8

engine where the standard deviation varies between 2 – 3%-units. For the 6 cylinder
engine the variations are smaller. Further, the di�erence between the minimum and
maximum values for each parameter in the calibration curve varies between approx-
imately 1.5 – 4%-units for the inline six cylinder engine and 3 – 12%-units for the V8
engine. Another di�erence between the two engine con�gurations is the appearance
of the calibration curve. For the 6 cylinder engine the line starts at approximately 5%,
has a slightly positive slope, and ends at approximately 10%, which corresponds to the
computations in Example 1. For the V8 engine the line is quite di�erent, it starts at about
1 %, varies quite a bit, and ends at -1 %.�ese investigations indicate that the air mass-�ow
sensor has to be continuously monitored and adapted, to ensure safe and clean engine
operation over time.

�e large spread among the calibration curves for the V8 engine plot, of about 10%-
units from min to max, indicates that an ad hoc approach for compensating the sensor
signal using only a calibration curve (2.4) might not be enough, see Example 1. �e
quality has to be improved in a way that the spread is reduced as well.�ese observations
together with the importance of the estimates of λ and xegr necessitate an accurate
estimate of the air mass-�ow.
As Figure 2.5 shows there are no obvious trends in the data over time. However, due

to the relatively short time span over which the data is collected, it is hard to draw any
conclusions regarding long term aging of the air mass-�ow sensors.

2.3 Gas Flow Estimation
In the previous section it was shown that a sensor is not su�cient for acquiring an accurate
airmass-�ow signal, and themain two reasons were; i) the sensor needs to be calibrated to
compensate for its positioning in the intake system, ii) it needs continuous adaptation to
compensate for system aging and di�erent operating conditions caused by geographical
location, for example pressure, temperature, and humidity of the surrounding air.�is
section presents some basic approaches to cope with sensor adaptation and include ad
hoc mapping, according to (2.4), and Kalman �ltering (Kalman, 1960).�e investigation
analyzes the e�ect model quality has on the estimates from a model based estimator, and
is the topic of Section 2.3.1.

2.3.1 Methods for Improving Sensor Signals
�ere exist several ways of acquiring accurate estimates of these control and diagnosis
variables, e.g., direct measurement via physical sensors and model based estimation, and
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Figure 2.4: Min, max, mean, and standard deviation over all collected calibration curves
are presented for a 6 cylinder engine (upper plot) and a V8 engine (lower plot). It can be
seen that the variations are quite large for both engine con�gurations, especially for the
V8 engine.

all model based estimators are highly dependent on the accuracy of the model used.�is
becomes especially apparent if the assumptions in the design method do not hold. If
for example an EKF (Jazwinski, 1970) is used, the measurement and model errors are
assumed to be described by zero mean white noise processes, i.e. biased measurements is
not handled. Figure 2.6 presents estimates of the air mass-�ow from �ve di�erent sources;
raw measurement from the production sensor, adapted production sensor (2.4), model
output, EKF, i.e. combing the model and the adapted measurement, and a cell installed
reference sensor. All representing means of acquiring estimates of the air mass-�ow into
the intake system of an engine.
One observation from Figure 2.6 is that the model output Ŵmodel, computed us-

ing (2.1) and (2.2e), does not agree well withWref. It has an obvious o�set that is di�erent
for low and high air mass-�ows, but it manages to capture the system dynamics. From
this observation it is clear that the model does not fully describe the engine and these
model errors violate the assumptions made when utilizing the model to design an EKF,
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Figure 2.5:�e trend of four support points for a 6 cylinder engine (upper plot) and a
V8 engine (lower plot). It shows that there is no particular trend in either of the engine
con�gurations. Note that the samples are not equidistant.

i.e. zero mean Gaussian system and measurement errors. Another observation is that
also the raw measurement has an error that depends on the mass-�ow. In this case a
simple adaptation according to the calibration curve (2.3) in Section 2.2.1 signi�cantly
improves the estimation accuracy, see Ŵadapt.

Obviously the model output and the raw measurement performs poorly, and by
applying an adaptation scheme to the measurement much better estimates are acquired.
Similarly, by combining the model with the adapted measurement in an EKF, even better
estimates are achieved, see ŴEKF.

�ese estimators, the adapted mass-�ow sensor and the EKF, compile the essence
of the problems addressed in this thesis, i.e. the need for a systematic way of reducing
operating point dependent stationary estimation errors in model based estimators, and
the online adaptation of engine maps, or lookup-tables.
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Figure 2.6: Typical example of model output from a biasedmodel (Höckerdal et al., 2008),
whereWref is the air mass-�ow measured by a reference sensor. As o�en is the case, the
model captures the dynamics well but su�ers from operating point dependent stationary
errors. As comparison, the raw and adapted air mass-�ow sensor measurements are
presented, and an EKF using feedback from the adapted measurement is included as
well.

2.4 Publications and Contributions

�e overall goal with the work is the development of systematic methods that allow use
of models with errors, referred to as default models, for estimator design.�e focus is
on models based on �rst principles physics and a primary condition on the methods is
the preservation of the physical structure, or properties, of the models.
In system identi�cation, model error modeling (MEM) is treated in for example

Ljung et al. (1991); Stenman and Tjärnström (2000). However, since the focus here is on
default models that have biases, or other stationary errors, and aims at preserving the
physical structure of the model, the MEM path is not pursued. Methods that address
the issue of biased default models for estimation exist in e.g. model augmentation using
physical knowledge (Andersson and Eriksson, 2001) and proportional-integral (PI)
observers (Sö�ker et al., 1995; Koenig and Mammar, 2002).�e methods developed in
this thesis unify these ideas with the idea of estimating a minimal description of the
model bias.
In estimation, observability of the system is central to ensure consistent state and

parameter estimates.�is have made preservation of the default models’ observability
properties, in the developed methods, central. One method to check global observability
is for example Ljung and Glad (1994) which is applied to an engine example in Sokolov
and Glad (1999). However, this method applies to polynomial models and is not appli-
cable to the models addressed in this dissertation. Hence, local analyses using model
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linearizations, such as the Popov-Belevitch-Hautus (PBH)-test for ODE models (Kailath,
1980) and its DAE analogues (Dai, 1989), are used throughout the publications. An
important observation is that the system (2.1) is coupled, meaning that several states
have dependencies on both intake and exhaust states, which makes the default system
locally observable from any output.

2.4.1 Paper A – Model Augmentation for ODE:s
�e principal idea in the model augmentation is that local errors in the model may a�ect
several model states. Consider for example an observer based on the engine model (2.1)
consisting of three coupled volumes with one pressure state for each volume. �en
an error in one of the mass-�ow equations would, possibly, a�ect all three pressures.
Some possibilities are then to, introduce a model augmentation using physical intuition
(Andersson and Eriksson, 2001), or apply a PI-observer (Sö�ker et al., 1995).�e �rst
requires deep understanding of the modeled system while the latter only compensates
for bias in measured states used for feedback and does not bother about the origin
of the bias.�e developed method applies a separate step in the observer design that
estimates a low ordermodel error description, which is used formodel augmentation.�e
main contributions are a characterization of possible augmentations from observability
perspectives, a parameterization of the augmentations from themethod, and a robustness
analysis of the proposed augmentation estimation method.
An advantage of the developed method, compared to e.g. PI observers, is its ability

to incorporate information from extra sensors during the bias estimation. In this way
compensation of states not available for feedback in the �nal application is made possible.
It is also worth to note that both the model augmentation using physical knowledge and
the PI-observer �ts into the framework of the developed method.

2.4.2 Papers B and C – Map Adaptation
�e ideas above address the bias compensation through model augmentation, by describ-
ing the bias as a random walk, and thus does not store any information about the bias in
di�erent operating points. A common technique to handle operating point dependencies
in automotive applications is to introduce maps or look-up tables, (Guzzella and Am-
stutz, 1998; Peyton Jones and Muske, 2009).�ese maps are frequently used to describe
relations when physical models are unavailable, e.g., sensor and actuator characteristics,
cooler e�ciency, injector characteristics, and a�ertreatment systems. Common for these
maps is that they bene�t from continuous online adaptation to prevent undesired sys-
tem behavior. Routines for online map adaptation have been considered in Wu (2006);
Peyton Jones and Muske (2009), and a primary contribution in Paper B and Paper C is
simultaneous bias compensation and online map adaptation.

2.4.3 Paper D – ODE vs. DAE in Estimation
Using models with both fast and slow dynamics, i.e. sti� models, in real time estimation
may be numerically problematic.�e problem of sti� models, described by ordinary
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di�erential equations (ODE), for engine control is closely connected to the embedded
system in which it is implemented and its computational limitations. In engine control
units (ECU), a main di�culty with sti� models is that the model execution is scheduled
in loops with �xed frequencies, that limits the ECU:s capability of satisfactory solving the
di�erential equations. A possible solution (Hairer andWanner, 2000, Chapter 6), used in
for example electrochemical and reactive distillation processes (Mandela et al., 2010), is
to approximate fast dynamics with instantaneous relations, i.e. algebraic conditions. With
this approach a sti� ODE would be transformed into a system of di�erential algebraic
equations (DAE), while keeping the overall model structure.�is is exploited for a diesel
engine model with intake manifold throttle, EGR, and VGT in Paper D.�e stability and
estimation accuracy of an EKF based on the default sti� ODE is compared to that of an
EKF based on the corresponding DAE. It is shown that even though the ODE, for each
time-update, is less computational demanding than the resulting DAE, an EKF based
on the DAE achieves better estimation performance with less computational e�ort.�e
main gain with the DAE based EKF is that it allows signi�cantly increased step lengths
without degrading the estimation performance compared to the ODE based EKF.

2.4.4 Paper E – Model Augmentation for DAE:s
�e number of models described by DAE:s have increased, partly due to modern model-
ing tools such as Dymola, or similar tools using the Modelica®modeling language, and
Simscape that o�en deliver DAEmodels and since DAE:s are a way of describing systems
with both slow and fast dynamics. As more and more DAE models are available, it is
natural to use them for observer or estimator design. Also these models may su�er from
de�ciencies that make them unsuitable for direct use in estimation and Paper E extends
the model augmentation results for ODE:s from Paper A to DAE:s.�e main contribu-
tions are necessary and su�cient conditions for the preservation of the observability
properties of the default model during the augmentation.
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Appendix A

Model Details

Below follows a summary of themodel equations using the symbols and indices presented
in Tables A.1 and A.2.�e model states, inputs, and outputs are presented in Table A.3
and more details about the model is found in Wahlström and Eriksson (2010).

Manifolds

Intake manifold

d
dt

pim =Ra Tim
Vim

(Wth +Wegr −Wei)

Exhaust manifold

d
dt

pem =Re Tem
Vem

(Weo −Wegr −Wt) +
pem
Tem

d
dt

Tem

d
dt

Tem = Re Tem
pem Vem cve

((Weo −Wegr −Wt) cve(Tem,in − Tem)+

Re(Tem,in (Weo −Wegr −Wt) − Tem (−Weo +Wegr +Wt)))

Intercooler

d
dt

pic =
Ra Tim
Vic

(Wc −Wth)
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Intake Throttle

Wth =
pic Ψth(Πth)Ath,max fth(uth)√

Tim Ra

Ψth(Πth) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ψ∗th(Πth) if Πth ≤ Πth,lin

Ψ∗th(Πth,lin)
1−Πth
1−Πth,lin

if Πth,lin < Πth

Ψ∗th(Πth) =
√
2 γth

γth − 1
(Π2/γthth −Π1+1/γthth )

Πth =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 2
γth+1

)
γth

γth−1 if pim
pic

< ( 2
γth+1

)
γth

γth−1

pim
pic

if ( 2
γth+1

)
γth

γth−1 ≤ pim
pic

≤ 1

1 if 1 < pim
pic

fth(uth) = bth1(1 − cos(min(ath1 uth + ath2 , π))) + bth2

Cylinder
Cylinder Flow

Wei =
ηvol pim ne Vd
120Ra Tim

ηvol = cvol1
rc − ( pem

pim
)
1/γe

rc − 1
+ cvol2W2

f + cvol3Wf + cvol4

Wf =
10−6

120
uδ ne ncyl

Weo =Wf +Wei

ExhaustManifold Temperature
Cylinder out temperature

Te = Tim +
qHV fTe(Wf , ne)

cpeWeo

fTe(Wf , ne) = fTeWf(Wf) ⋅ fTene(ne)
fTeWf(Wf) =cfTeWf1W3

f,norm + cfTeWf2W2
f,norm + cfTeWf3Wf,norm + cfTeWf4

fTene(ne) =cfTene1 n2e,norm + cfTene2 ne,norm + 1

Wf,norm =Wf ⋅ 100, ne,norm = ne
1000
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Heat losses in the exhaust pipe

Tem,in = Tamb + (Te − Tamb) e−
htot π dpipe lpipe npipe

Weo cpe

EGR-Valve

Wegr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Aegr pem Ψegr(
pim
pem
)

√
Tem Re

if pem ≥ pim

− Aegr pim Ψegr( pem
pim
)

√
Tegr,cool Ra

if pem < pim

Ψegr(Πegr) = 1 − (
1 −Πegrlim(Πegr)
1 −Πegropt

− 1)
2

Πegrlim(Πegr) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Πegropt if Πegr < Πegropt

Πegr if Πegr ≥ Πegropt
Aegr = Aegrmax fegr(uegr)

fegr(uegr) = begr1(1 − cos(min(aegr1uegr + aegr2 , π))) − begr1(1 − cos(min(aegr2 , π)))

Turbocharger
Turbo Inertia

d
dt

ωt =
Pt ηm − Pc

Jt ωt

Turbine Efficiency
Pt ηm = ηtm Pt,s = ηtmWt cpe Tem (1 −Π1−1/γet )

ηtm = ηtm,BSR(BSR) ⋅ ηtm,ωt(ωt) ⋅ ηtm,uvgt(uvgt)

ηtm,BSR(BSR) = 1 − bBSR (BSR2 − BSR2opt)2

BSR = Rt ωt√
2 cpe Tem (1 −Π1−1/γet )

ηtm,ωt(ωt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − bωt1 ωt if ωt ≤ ωt,lim

1 − bωt1 ωt,lim − bωt2(ωt − ωt,lim) if ωt > ωt,lim

ηtm,uvgt(uvgt) = bvgt1 u3vgt + bvgt2 u2vgt + bvgt3 uvgt + bvgt4

Πt =
pt
pem
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TurbineMass-Flow

Wt =
Avgtmax pem fΠt(Πt) fωt(ωt,corr) fvgt(uvgt)√

Tem Re

fΠt(Πt) =
√
1 −ΠKt

t

fωt(ωt,corr) = 1 − cωt (ωt,corr − ωt,corropt)2

ωt,corr =
ωt

100
√
Tem

fvgt(uvgt) = cf2 + cf1

¿
ÁÁÁÀmax

⎛
⎝
0, 1 − (

uvgt − cvgt2
cvgt1

)
2⎞
⎠

Compressor Efficiency

Pc =
Pc,s
ηc

=
Wc cpa Tamb

ηc
(Π1−1/γac − 1)

Πc =
pic
pamb

ηc(Wc,corr , Πc) = ηc,W(Wc,corr , Πc) ⋅ ηc,Π(Πc)
ηc,W(Wc,corr , Πc) = 1 − aW3(Wc,corr − (aW1 + aW2 Πc))2

ηc,Π(Πc) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

aΠ1 Π2c + aΠ2 Πc + aΠ3 if Πc < Πc,lim

aΠ4 Π2c + aΠ5 Πc + aΠ6 if Πc ≥ Πc,lim

aΠ6 = Π2c,lim(aΠ1 − aΠ4) +Πc,lim(aΠ2 − aΠ5) + aΠ3

Wc,corr =
Wc

√
(Tamb/Tref)

(pamb/pref)

CompressorMass-Flow

Wc =
pamb π R3c ωt
Ra Tamb

Φc

Ψc =
2 cpa Tamb (Π1−1/γac − 1)

R2c ω2t

Φc =
kc1 − kc3 Ψc
kc2 − Ψc

kci = kci1 (min(Ma,Mamax))2 + kci2 min(Ma,Mamax) + kci3 , i = 1, . . . , 3

Ma = Rc ωt√
γa Ra Tamb
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Table A.1: Symbols used in the plant model.

Symbol Description Unit

A Area m2
BSR Blade speed ratio –
cp Spec. heat capacity, constant pressure J/(kg⋅K)
cv Spec. heat capacity, constant volume J/(kg⋅K)
J Inertia kg⋅m2
ncyl Number of cylinders –
ne Rotational engine speed rpm
p Pressure Pa
P Power W
qHV Heating value of fuel J/kg
rc Compression ratio –
R Gas constant J/(kg⋅K)
R Radius m
T Temperature K
uegr EGR control signal† %
uth �rottle control signal† %
uvgt VGT control signal† %
uδ Injected amount of fuel mg/cycle
V Volume m3
W Mass �ow kg/s
γ Speci�c heat capacity ratio –
η E�ciency –
Π Pressure quotient –
ρ Density kg/m3
Φc Volumetric �ow coe�cient –
Ψc Energy transfer coe�cient –
ω Rotational speed rad/s
† 0 – closed, 100 – open
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Table A.2: Indices used in the
plant model.

Index Description

a air
amb ambient
c compressor
d displaced
e exhaust
egr EGR
ei engine cylinder in
em exhaust manifold
eo engine cylinder out
ic intercooler
f fuel
im intake manifold
t turbine
th throttle
vgt VGT
vol volumetric
δ fuel injection

Table A.3: States, inputs, and
outputs of the plant model.

States Inputs Outputs

pim uδ pim
pem uth pem
pic uegr pic
ωt uvgt ωt
Tem ne Wc



Appendix B

Experimental Setup and Data

�e data are collected in engine test cells at Scania CV AB in Södertälje, Sweden and are
from two inline six cylinder Scania diesel engines with EGR and VGT. One of the engines
was also equipped with an intake manifold throttle.�e data were collected during a
European transient cycle (ETC) (Council of European Parliament, 2005) for the engine
without throttle, and a World harmonized transient cycle (Economic Commission for
Europe – Inland Transport Committee, 2010) for the engine with throttle.�e sensor
signals used in all experimental evaluations are; intake and exhaust manifold pressures,
turbine speed, and engine speed. Actuator signals used are; VGT and EGR positions,
and injected amount of fuel. All these signals are available on a standard engine, i.e. no
extra laboratory sensors were used, and collected at a sampling rate of 100Hz.
An extra air mass-�ow sensor, Wref, is used as a reference for the experimental

evaluation in Chapter 2. �is signal is logged using a di�erent measurement system
at a sampling frequency of 10Hz.�e measurements from the di�erent measurement
systems are synchronized for the evaluation.�e synchronization is made by comparing
measurements of the engine speed which is logged with both systems, and performing a
time shi�.

Sensor Dynamics
To justify that it is the system dynamics that is captured in the measurements, i.e. the
sensors are fast enough to be able to track the system dynamics, a brief presentation of
the sensor data is presented.�e sensor speci�cations are provided by Scania.

�e pressure sensors are capacitive pressure sensors and have a �rst order step
response time constant of approximately 15ms for the intake manifold pressure, and
20ms for the exhaust manifold pressure.�e intake manifold and intercooler pressure
sensors are mounted directly in the intake manifold and right before the throttle, while
the exhaust manifold sensor is mounted on an 0.4m long pipe to avoid heat and soot.

29
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�e mass-�ow sensor measuring the air mass-�ow through the compressor is a hot-
wire sensor also with a �rst order response and a time constant of 20ms.�e closed-loop
control circuit maintains a constant temperature di�erential between the passing air
stream and a platinum wire.�e current required to heat the platinum wire provides an
index of the air mass-�ow.

�e rotational speed sensors are inductive and measure the periodic variation in
the magnetic �ux generated by ferromagnetic ring gears passing induction coils. For
the engine speed a cog passes the coil every sixth cranksha� degree and the signal used
throughout this thesis is the mean value of 20 consecutive cog passes.�is gives a time
constant of approximately 20⋅(1-e−1) ≈ 13 samples. For the turbo speed there is only one
cog on the ring gear and the signal used throughout the thesis is the median of three
consecutive coil passes. �at is, the maximum lag is roughly 13 times six cranksha�
degrees and 2 times 360 turbo sha� degrees respectively. For the engine idle speed of
500 rpm, this gives a maximal time constant of approximately 13⋅(500/60⋅(360/6))−1
= 26ms, and for turbo speeds over 20 000 rpm, which is the minimum revolution
speed for which the sensor works, this gives a maximum time delay of approximately
2⋅(20 000/60)−1 = 6ms. Since these sensor responses are signi�cantly faster than the
dynamics seen in measurements they are neglected throughout the thesis.

Reference Signal –Wref

�e measured reference outputWref is a cell sensor measuring the air mass �ow into
the engine. It is a Sensy�ow P-Tube hot-wire sensor with type no. 14241-7962638 and
a measuring range of 0.055-1.111 kg/s. �e uncertainty is less than 1% of reading and
the sensor has a response time of 12ms.�is sensor is placed approximately 4meters in
front of the engine air mass-�ow sensor on a straight pipe with a diameter of 0.28m.�e
sensor reading is assumed to be without errors, due to the almost ideal sensor placement.
�e volume and distance between the two sensors give rise to unwanted dynamics.
Calculations show that the �lling and emptying dynamics from this volume has a time
constant of approximately 10ms and the e�ect from wave propagation has approximately
the same traveling time, which is small in comparison to the time constants of the system.
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Abstract

A systematic design method for reducing bias in observers is developed.�e
method utilizes an observable default model of the system together with mea-
surement data from the real system and estimates a model augmentation.�e
augmented model is then used to design an observer which reduces the esti-
mation bias compared to an observer based on the default model.�ree main
results are a characterization of possible augmentations from observability per-
spectives, a parameterization of the augmentations from the method, and a
robustness analysis of the proposed augmentation estimation method. �e
method is applied to a truck engine where the resulting augmented observer
reduces the estimation bias by 50% in a European Transient Cycle.
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1 Introduction
In many application areas there are quantities that are important for control and diag-
nostics but that are not measured due to for example di�culties with the measurement
methods or high costs of the sensors.�is has made estimation an important and active
research area, which is especially true in the automotive area where cost is important,
see Lino et al. (2008); García-Nieto et al. (2008); Andersson and Eriksson (2004) for
some examples.
In all model-based control or diagnosis systems, the performance of the system

is directly dependent on the accuracy of the model. In addition, modeling is time
consuming and, even if much time is spent on physical modeling, there will always
be errors in the model. �is is especially true if there are constraints on the model
complexity, as is the case in most real time systems. Another scenario is that a model
developed for some purpose, e.g. control, exists but needs improvements before it can
be used for other purposes, for example diagnosis.
In many applications, like for example engine control and engine diagnosis, it is

crucial to have unbiased estimates. In model based diagnosis, the true system is o�en
monitored by comparing measured signals to estimated signals. If the magnitude of
the di�erence, the residual, is above a certain limit a decision that something is wrong
is made. In engine control, one objective is to maximize torque output while keeping
the emissions below legislated levels and the fuel consumption as low as possible. For
diesel engines this is especially hard since the control system does normally not have any
feedback information from a λ- or NOx-sensor and have to rely on estimated signals
instead (Wang, 2008). In both cases, biased estimates impairs the performance.

�e objective of this work is to develop a systematic method for reducing estimation
bias in observers without involving further modeling e�orts.�is work is an extension
of preliminary results in Höckerdal et al. (2008b) and the main extensions are a theo-
retical characterization of all solutions and additional method evaluations, including a
robustness analysis with respect to measurement noise and model uncertainty.

�emethod utilizes an observablemodel andmeasurement data from the true system.
�e given model, referred to as the default model, and the measured inputs and outputs
from the true system are used to estimate a suitable model augmentation. �en, the
augmented model is used to design an observer that is shown to give estimates with
reduced bias compared to an observer based on the default model.�ree approaches for
estimating a bias compensating augmentation are developed and evaluated with respect
to measurement noise and model errors. Key results are a theoretical characterization of
all possible augmentations from observability perspectives and a parametrization of the
estimated augmentations. Finally the method is evaluated on a non-linear diesel engine
model with experimental data from an engine test cell.

2 Problem Formulation
Previous experience at Scania CV AB of state estimation based on an existing state-space
model of a truck engine reveals that the model captures dynamic behavior reasonably
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well but su�ers from stationary errors (Höckerdal et al., 2008a). Designing an observer
based on this model results in biased estimates. How to reduce the bias in a systematic
manner is the topic of this paper.

�e starting point is an existing model, referred to as the default model, that is
provided in state-space form

ẋ = f (x , u) (1a)
y = h(x), (1b)

where x is the state-vector, u the known control inputs, y the measurement vector, and
f and h are non-linear functions.

�e objective is to �nd a systematic way to design an observer that gives an unbiased
estimate of either the complete state x or a function of the state z = g(x).�is should
be done even though the default model is subject to signi�cant bias errors. A direct
approach to compensate for constant, or slowly varying, biases is to augment the default
model with bias variables q as

ẋ = f̃ (x , u, q) (2a)
q̇ = 0 (2b)
y = h̃(x , q), (2c)

and design the observer using this augmented model. If the augmentation captures the
true modeling errors and the augmented system is observable, the observer estimates
is made unbiased. An obvious question is then how to introduce the bias variable q
in the model equations. One way could be through process knowledge, which have
been successfully applied in Andersson and Eriksson (2004); Tseng and Cheng (1999).
However, in this paper an estimation procedure based on available measurement data is
proposed.
Besides the natural restriction, that the augmented model (2) is observable, it is also

desirable not to introduce more extra bias states than necessary. It is therefore desirable
to �nd a bias vector q with as low dimension as possible that manages to reduce the
bias. Another reason for �nding a low dimensional bias is that, since the model o�en
is a �rst-principles physical model, bias in multiple states may be explained by one
underlying bias a�ecting all these states. For example, bias in two pressures can originate
from a bias in the mass �ow between the two volumes or an incorrect modeling of energy
conservation can give rise to bias in several states connected to the energy. However,
the bias is necessarily not the same in the entire operating region of the system and may
vary between operating points.�is is part of the reason for introducing the bias as new
states, rather than just a parameter, which allows some tracking ability of the bias.
In model (1) there are two natural ways to introduce biases, in the dynamic equation

(1a) or in the measurement equation (1b). In the truck engine application the sensors, in-
take and exhaust manifold pressures and turbine speed, are consideredmore reliable than
the model and the bias augmentation is therefore introduced in the dynamic equations
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according to

ẋ = f (x − Aqq, u) (3a)
q̇ = 0 (3b)
y = h(x), (3c)

where a stationary point of the system is moved by Aqq.�e matrix Aq is thus a descrip-
tion of how the underlying bias variable q in�uences the stationary value of the state
variable x.�e model (3) will be referred to as the augmented model. It is worth men-
tioning that although the result in this paper focuses on biases in the dynamic equation,
it is straightforward to modify the approach to also cover sensor biases.

2.1 Problem and Paper Outline
Based on the discussion above, the problem studied in the sections to follow can now
be stated as: Given an observable default model (1) and available measurement data,
�nd a low order bias augmented model (3) and design an observer that estimates x
with reduced bias compared to using the default model. �e observer should also be
implementable in an Engine Control Unit (ECU).
To solve the problems, some issues need to be addressed. First, which matrices Aq

are possible at all? All are not possible since it is required that the augmented system
is observable and a characterization of possible augmentations is derived in Section 4.
Among these possible bias augmentations, which should be used? Section 5 describes
three approaches for how to estimate a, for bias compensation, suitable low order Aq
based on measurement data.
Section 6 presents two examples of the proposed estimator design methodology

applied to a Scania diesel engine using simulated and real measurement data respectively.

3 Discretization and Linearization
As a �rst step, the nonlinear augmented model (3) is transformed to a linearized time
discrete model. A reason for the discretization is the demand on the implementation,
which will be done in the ECU as a time discrete system. Here, a simple Euler forward
discretization with step size Ts seconds is used. Note that observability does not depend
on the choice of discretization method, since as long as Ts is chosen small enough the
results are valid also for, e.g. zero-order-hold (Kalman et al., 1963).
One objective of the paper is to �nd a suitable Aq such that (3) is locally observ-

able and to be able to use simple observability conditions, the observability analysis is
here performed on a linearization of the non-linear model (3). Of course, non-linear
observability is not guaranteed from observability of the linearization. Nevertheless,
observability of a linearization in a stationary point is a su�cient condition for local
observability of the non-linear system, see�eorem 6.4 in Lee and Markus (1968). Even
though observability is not strictly guaranteed, e.g. in transient mode when moving
between operating points, the referred result gives theoretical support for using the
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linearized system in the observability analysis.�us, when analyzing (3) the following
model will be used

(xt+1qt+1
) = (I + TsA −TsAAq

0 I )(xtqt
) + (TsB

0 )ut (4a)

yt = (C 0)(xtqt
) , (4b)

where
A = ∂ f

∂x
∣
x=x0
u=u0

, B = ∂ f
∂u

∣
x=x0
u=u0

, and C = ∂h
∂x

∣
x=x0
u=u0

.

In the following, I + TsA is substituted for F to increase readability and (4) becomes

(xt+1qt+1
) = (F −(F − I)Aq

0 I )(xtqt
) + (TsB

0 )ut (5a)

yt = (C 0)(xtqt
) . (5b)

4 Possible Augmentations
Augmenting a model with more states may a�ect the observability of the model. Since
the purpose of the augmented model is to use it for estimation, observability has to be
maintained also a�er the augmentation. To �nd which augmentations that are possible
an observability investigation of the augmented model is performed.�e aim is to derive
a necessary and su�cient condition on Aq such that the augmented model is observable.
�e observability criterion used in the analysis is known as the Popov-Belevitch-Hautus
(PBH)-test (Kailath, 1980).
Similar results can be found in Bembenek et al. (1998), which also includes a discus-

sion regarding the observability results, similar to the short discussion in the end of this
section.

�eorem 4.1 A pair (C , F) is observable if and only if

( C
λI − F)

has full column rank ∀λ ∈ C.

Now, using�eorem 4.1 and the assumption that the default model is observable the
main result of this section can be formulated as

�eorem 4.2 Assume that (C , F) in (5) is an observable pair then the augmented system
(5) is observable if and only if

Ker ((F − I) (Aq NC)) = {0} ,

where the columns of NC span KerC.
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Note that this is equivalent to

(F − I) (Aq NC) ,

having full column rank.

Proof See Appendix B. ◻

�is means that the space spanned by the columns in Aq can lie neither in KerC nor
in Ker (F − I) for the augmented model to be observable.�ese interpretations of the
rank condition can be understood by analyzing the two requirements separately. First,
the requirement that Aq can not lie in KerC is easily seen by studying a linear example.

Example 1 Starting with a linear model with a stationary bias

xt+1 = Fxt − (F − I)Aqqt
qt+1 = qt (6a)
yt = Cxt

and performing a change of variables, zt = xt − Aqqt , gives

zt+1 = Fxt − (F − I)Aqqt − Aqqt = Fzt
qt+1 = qt (6b)
yt = Czt + CAqqt ,

which shows that columns of Aq in KerC are not observable. ◇

Second, a non-empty Ker (F − I) implies that the system contains pure integrators,
and a bias in Ker (F − I) is not distinguishable from an unknown initialization of the
integrator and is therefore not observable.
A closer look at the requirement that (F − I)(Aq NC) has to have full column rank

conveys some other interesting results. First, assuming full column rank of (F − I), it
is easily seen that the number of augmented states nq never can exceed the number of
linearly independent measurement signals ny since

rank(F − I)(Aq NC) = rank(Aq NC) ≤ rankAq + rankNC = nq + nx − ny ≤ nx , (7)

i.e. nq ≤ ny . Second, again imagine that (F − I) has full rank which means that the
model does not have any pure integrators, then the full column rank condition on
(F − I)(Aq NC) reduces to requiring full column rank of (Aq NC) or, equivalently, full
column rank of the product CAq . Now if C has one or several zero columns, then CAq
will not contain any information from those rows in Aq corresponding to zero columns
in C.�at is, those rows in Aq that correspond to zero columns in C will not contribute
to the observability, see the following example.
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Example 2 Illustration of possible augmentations for a default model without pure inte-
grators and

C = (1 0 0
0 1 0) .

Let × denote a non-zero element, then some possible augmentations are

A1q =
⎛
⎜
⎝

× 0
0 ×
0 0

⎞
⎟
⎠
, and A2q =

⎛
⎜
⎝

0 ×
× 0
0 0

⎞
⎟
⎠

since
CA1q = (× 0

0 ×) , and CA
2
q = (0 ×

× 0) ,

which have full column rank. While an augmentation

A3q =
⎛
⎜
⎝

× 0
0 0
0 ×

⎞
⎟
⎠
is not possible since CA3q = (× 0

0 0)

does not have full column rank. ◇

5 Augmentation Estimation
Now that all possible model augmentations have been characterized, the next question
is how to �nd a suitable augmentation, using measured data from the real system, that
ful�lls the requirements derived in Section 4.�e proposed augmentation estimation
procedure is divided into two steps, i) from measured data estimate samples of the bias
and ii) compute a basis for the bias samples.�ree approaches for how to conduct the
�rst step are developed. In the second step a low order augmentation is computed by
performing an Singular Value Decomposition (SVD) on selected samples of the bias
found in step one.

5.1 Bias Estimation
�e �rst step in the estimation of a low order model augmentation deals with estimating
the bias, i.e. collect samples of the bias βt = Aqqt . �e �rst approach is quite simple
and its main purpose is to illustrate the basic ideas for the estimation of bias samples,
whereas the second and third approach are applicable to more general systems. Since the
method aims at reducing bias in stationary operating points only stationary behavior
and data is studied.

Approach 1

�e �rst approach utilizes the discretized linearization directly and the assumptions that
all states are measured, i.e. C has full column rank, and that the system does not have any



42 Paper A. Observer Design and Model Augmentation . . .

pure integrators, i.e. (I − Ft) has full column rank.�e linearized and time discretized
augmented model is

xt+1 = Ftxt + (I − Ft)Aqqt + TsBtut

yt = Ctxt .

Due to the full column rank assumptions on C and (I − Ft) it is possible to invert the
measurement equation and insert the resulting x in the dynamic equation.�is gives
that

βt = Aqqt = (I − Ft)−1(C†t+1 yt+1 − FtC†t yt − TsBtut),
where † denotes the pseudo inverse.

�is approach has three evident �aws, it requires a full column rank C and (I − Ft)
and, since no �ltering of the measurements is involved, it is sensitive to low Signal to
Noise Ratio (SNR).

�erefore two other approaches are proposed for estimating bias samples. Common
for both these approaches are that they utilize the residuals from an observer and the
assumption that the true bias enters the model according to Equation (3).�e fact that
they are based on observers makes them less sensitive to low SNR and imply that they do
not require full column rank C to work.�e �rst employ an observer based on the default
model and the bias samples are computed by inverting the observer system.�e second
employ a fully augmented model ful�lling the observability requirements developed in
Section 4.

Approach 2

�e second approach uses the residuals originating from an observer based on the default
model. Here, the observer is an Extended Kalman Filter (EKF) (Kailath et al., 2000),
where the noise covariance matrices Q and R are design parameters tuned by the user.
Of course, other observer designs are equally possible but here an EKF is used. Let Kt be
the EKF feedback gain then the estimation error becomes,

et+1 = xt+1 − x̂t+1∣t+1
= Ftxt + (I − Ft)Aqq + TsBtut−
(Ft x̂t∣t + TsBtut + Kt(yt+1 − CtFt x̂t∣t − CtTsBtut))
= {yt+1 = CtFtxt + Ct(I − Ft)Aqq + CtTsBtut}
= (Ft − KtCtFt)et + (I − KtCt)(I − Ft)Aqq. (9)

Equation (9) can not be used directly since the state estimation error is not known.
�erefore, the output error

rt = yt − ŷt∣t = Ct(xt − x̂t∣t) = Ctet , (10)

is used for estimating the bias.
As previously stated, solely stationary parts of the residuals are involved in the bias

estimation. It would be possible to use also dynamic parts of the residuals and a dynamic
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inverse.�e reason for not utilizing these here is to prevent dynamic estimation errors
from a�ecting the estimation of the constant or slowly varying bias.
Now, utilizing that only stationary data is considered, (9) and (10) can be combined

resulting in

rstat = Cstatestat
= Cstat(I − Fstat + KstatCstatFstat)−1 × (I − KstatCstat)(I − Fstat)Aqqstat

and the bias can be estimated as

βt = Aqqt = (Cstat(I − Fstat + KstatCstatFstat)−1 × (I − KstatCstat)(I − Fstat))†rt . (11)

Approach 3

An alternative to Approach 2 for �nding βt is to augment the default model with as
many extra states as possible. According to�eorem 4.2 the requirement on Aq is that,
(F − I)(Aq NC) has to have full column rank.�is means that Aq can have a maximum
of ny columns.�ese columns have to be linearly independent of the columns of NC
and can not lie in Ker (F − I). One way to construct such an augmentation is to use C†
and leave out those columns that become zero when multiplied by (F − I) from the le�.
�en run the observer based on the augmented model, estimating both x̂ and q̂, and
assemble βt = C† q̂t .
An advantage with this approach is that no inversions as those in (11) are needed.

A disadvantage though is that since a fully augmented model is used the order of the
observer might be unnecessarily high.

5.2 Augmentation Computation
As stated in the problem formulation in Section 2, the bias is necessarily not the same in
the entire operating region of the system.�is makes it important to collect samples of
the bias from stationary operating points selected such that the entire operating region
is covered. From the �rst step of the proposed procedure, bias samples are collected
according to this. Based on the discussion of only a few underlying biases a�ecting
several states in Section 2, the task of step two is to �nd a low order basis spanning the
space in which these bias samples are located.
To start with bias samples from N stationary operating points are assembled

β̄nx×N = (β1 ⋯ βN) ,

�en the SVD of β̄ is computed,
β̄ = UΣV∗ ,

where U contains orthogonal vectors spanning the space in which the bias moves and Σ
the corresponding singular values.�e singular values in Σ are ordered in non-increasing
order which means that the far le� columns of U , corresponding to large singular values,
represent the most dominating directions along which the bias moves.�erefore the
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dimension of q can be found by comparing the singular values in Σ, and picking the
most signi�cant ones.�en the corresponding columns of U are used to assemble Âq .

�is way of computing an augmentation from bias samples is optimal with respect
to the Frobenius norm.

5.3 Properties of the Estimated Augmentation
According to the discussion in the end of Section 4, the properties of C place restrictions
on which Aq :s that are possible to �nd.�e conclusion of that discussion is that rows in
Aq corresponding to zero columns in C become zero in the estimation step. However, a
more thorough analysis of the three bias estimation approaches shows that more can be
said.

�eorem 5.1 Assume that the observer gain, K, is chosen such that the observer is strictly
stable and does not have any poles in the origin.�en, in absence of noise, the bias samples
are spanned by the rows of C and can thereby be written as

βt = CTΓ.

Proof See Appendix B. ◻

Note that�eorem 5.1 holds for the pseudo inverse and is not generally true for an
arbitrary le� inverse.
As a consequence, the observer based on an estimated augmentation may not be able

to reduce the bias in the estimates to acceptable levels.�is problem can be circumvented
in, for example one of the two following ways. �e �rst is for an engineer to design
an Aq not possible to �nd through estimation, for example through knowledge of the
underlying physics.�e second is to, during the design phase, add extra sensors to the
true system to acquire a full column rank C which enables estimation of all rows in
Aq . When utilizing this possibility one must be cautious and check the observability of
the augmented system that in the end will not rely on the additional sensors used for
estimating Âq .�at is, check the column rank of (F − I)(Âq NC), and in case of column
rank de�ciency remove those columns in Âq causing rank de�ciency. Since SVD is used,
the columns in Âq are arranged in non-increasing signi�cance order which makes it
appropriate to remove the columns in Âq starting from the right to get an augmentation
that is observable.

�e example below illustrates the remarks regarding the e�ects that properties of C
have on the augmentation estimation.

Example 3 Consider a true system with

F =
⎛
⎜
⎝

1 1 −1
−1 0 1
1 1 −1

⎞
⎟
⎠
, and C = (1 0 0

0 2 1)
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and a true bias,

Aq =
⎛
⎜
⎝

1
2
3

⎞
⎟
⎠
.

�en the estimate of Aq , according to�eorem 5.1, will be

Âq =
⎛
⎜
⎝

1
2 × 7/5
1 × 7/5

⎞
⎟
⎠
,

where the factor 7/5 comes from minimizing

∥Aq − CT (Γ1Γ2
)∥ = (1 − Γ1)2 + (2 − 2Γ2)2 + (3 − Γ2)2

with respect to Γ1 and Γ2.
�at is, because of the structure of C the top element in Âq will be correct while the

bottom two elements will not. ◇

5.4 Approach Evaluation
Two main approaches, approaches 2 and 3, for estimating the bias have been proposed.
It is important to understand how these approaches perform under varying operating
conditions and model uncertainty.�erefore, the approaches are evaluated with respect
to robustness against model errors and robustness to changes in noise levels. �is is
done by introducing noise and modeling errors in a non-linear simulation model of a
Scania diesel engine with exhaust gas recirculation (EGR) and variable geometry turbine
(VGT), and performing Monte Carlo simulations. In the simulations, a one-dimensional
q is also introduced, i.e. Aq is a vector with three elements.
Modeling errors can be introduced in many ways and it is di�cult to obtain a com-

prehensive evaluation of robustness properties of a non-linear method. �erefore, a
more pragmatic approach is adopted. First, model errors are introduced by manipulating
physical constants in the simulation model and thus making the simulation model, that
generates the observations, di�erent from the default model used for designing the
observer. Another way model errors are introduced is by pre-multiplying the vector �eld
f in (1a) by a slowly varying sinusoid, i.e. the simulation is done with f̄ (x , u) de�ned
as f̄ (x , u) = (1 + γ sin(Λt)) f (x , u), where Λ is the model error frequency, and γ is a
small number varied between 0.1 and 0.5. Doing Monte Carlo simulations with such
model errors introduced reveal that both approaches react similarly to the model errors
with respect to degraded performance in bias estimation and variance in the estimation.
No certain conclusion can be drawn concerning which approach is more robust against
modeling errors and the overall picture is that both approaches have similar graceful
performance degradation with increased modeling errors.
Examining the e�ect of measurement noise is done by introducing white Gaussian

noise with di�erent noise levels in the simulation model and estimating the e�ect on the
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Figure 1: Estimation variance for bias estimation approaches 2 and 3 with di�erent
measurement noise – k ⋅N (0, R).

augmentation estimation by computing the variance in the β i :s. In Figure 1 the e�ect of
increased measurement-noise level on the variance in the estimated β i :s is shown. It is
seen that Approach 3 is signi�cantly less sensitive to measurement noise and therefore
preferable when estimating an augmentation.

5.5 Method Summary
�e procedure can be summarized in three steps.

Step 1 - Linearize and discretize the model if necessary. Normally, the default model
is a non-linear time continuous model such as (1) and has to be linearized and
discretized.

Step 2 - Find an appropriate augmentation, Aq , and compile an augmented model (4).
Here the designer has a choice, either to estimate an augmentation frommeasured
data, introduce an augmentation found in some other way, or to combine an
estimated augmentation with one found through system knowledge.

�e estimation procedure contains two steps, i) estimation of bias samples utilizing
one of the three approaches presented in Section 5.1, ii) compute a basis for the
bias samples using SVD.

With good knowledge of the system, the designer might have some idea of what is
causing the bias in the estimates and can choose an appropriate Aq .
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To combine an augmentation found through process knowledge with one found
through estimation can be desirable if some model de�ciencies are known but
does not manage to achieve satisfactory bias reduction. In this case the estimation
approach can be applied to the, by the engineer, partly augmented model to �nd
an additional augmentation that captures the remaining dominating bias.

Step 3 - Design an observer based on the augmented model (3) and the Aq found in Step
2. In this paper, an Extended Kalman Filter is used but any non-linear observer
design methodology is possible.

6 Experimental Evaluation
To evaluate the method experiments are performed using a non-linear model of a heavy-
duty truck engine.�e experiments consist of a simulation study of the non-linear model,
and evaluation of the method on measurement data from an engine test cell.

�e non-linear model of the Diesel engine has three states: pim, pem, and ntrb, that
represent intake and exhaust manifold pressures, and turbine speed respectively. See
Appendix A for more information about the engine and model. In the second exper-
iment, real data from the engine is used together with the engine model to illustrate
the properties of the proposed approach in a real application. In both experiments the
stationary parts of the data, used in the augmentation estimation, are separated out
through visual inspection and estimation Approach 3 is chosen to estimate the bias.

6.1 Evaluation Using Simulated Data
�e objective of the �rst experiment is to illustrate how the approach, which is based
on linearization procedures, performs when fed with data from a non-linear simulation
model.�us, synthetic data is created where known biases are introduced in the sim-
ulation.�e method is then applied to show how biases in non-linear systems can be
estimated.

�e introduced bias is represented by a matrix

Aq =
⎛
⎜
⎝

1 −2
2 1
0 0.2

⎞
⎟
⎠
,

and two slowly varying biases q1 and q2.�is Aq means that there are two independent
biases a�ecting the model states which varies between approximately 0 and 10% of the
state values.�e default system has linear measurement equations where y1 = pim and
y2 = ntrb. However, according to the discussion in Section 5.3, an augmentation as the
one introduced in this example can not be estimated without a direct connection between
pem and y.�erefore the measurement equation is extended with an extra sensor for
pem for the augmentation estimation. Note that this extra sensor is not used for feedback
neither in the observer based on the default model nor in the observer based on the
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augmented observer.�is re�ects the situation that a lab environment or development
system may be equipped with extra sensors to achieve a better augmentation estimation.

�e observer based on the default model is referred to as the default observer while
the observer based on the augmented model is referred to as the augmented observer.
Both observers only use the pim and pem measurements. To make the simulation more
realistic, white system and measurement noise are added in the creation of the synthetic
data.
Using the simulated data and the default model, the augmentation estimation results

in

Σ ≈
⎛
⎜
⎝

5.0259 0 0
0 4.8669 0
0 0 0.0024

⎞
⎟
⎠
105 ,

and

U ≈
⎛
⎜
⎝

−0.8295 −0.5527 0.0800
0.5515 −0.8233 −0.0388
0.0881 0.0123 0.9960

⎞
⎟
⎠
,

where Σ indicates that there are two slowly varying biases present. Hence, Âq is estimated
using the �rst two columns of U .
At a �rst look Âq does not appear similar to Aq . However, the crucial fact is that the

columns of Âq and Aq span, approximately, the same space. A closer look reveals that
the elements in the bottom row is signi�cantly smaller than the other elements, and that
the factor between row one and two are approximately 2. �at is, the only thing that
di�ers between Aq and Âq is a scaling.

�e objective was not only to estimate the bias, but rather to obtain an observer that
compensated for the model bias.�us, an observer is created using EKF methodology
for a model augmented according to the estimated Âq .�e performance is compared to
the default observer.�e state estimates are presented in Figure 2 together with the true
states. It is easily seen that the augmented observer estimates pim and ntrb better than
the default observer. To obtain a better view on observer performance, the estimation
errors are plotted in Figure 3. Here it is clear that all three state estimates become better
with the augmented observer than with the default observer.

�e conclusion of this small simulation example is that the approach managed to get
a good enough estimate of a bias in a non-linear model to improve the state estimates.

6.2 Two Experimental Evaluations
�e experimental data described in Appendix A is used to evaluate the augmentation
estimation and observer performance.�e true states are approximated by non-causal,
zero-phase, low-pass �ltered measurements, where the �lter has a cut o� frequency of
2Hz, see Figure 4. Note that parts of the turbine speed data is missing, which is due to
the fact that the measuring range of the turbine speed sensor is limited, speeds below
20 000 rpm, or approximately 2 100 rad/s can not be measured.
Based on the measurement data, an augmentation is estimated using data from two

stationary operating points in the European transient cycle (ETC) of about 1 000 samples
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Figure 2: True states and estimated states using default and augmented observer in the
simulation study.

each. All states are measured and the augmentation estimation results in

Σ ≈ 105
⎛
⎜
⎝

5.3230 0 0
0 0.3739 0
0 0 0.0044

⎞
⎟
⎠
,

and

U ≈
⎛
⎜
⎝

−0.2610 0.9650 −0.0249
−0.9648 −0.2671 −0.0274
−0.0329 0.0169 0.9993

⎞
⎟
⎠
, (12)

where Σ indicates that there is one dominant slowly varying bias present. Hence, Âq is
selected to be only the �rst column of U .

Reduced Augmentation Order

In this system it is possible to augment the system with three extra states and still have an
observable system if all states are measured. One interesting question is if the proposed
method that estimates a lower dimension augmentation can still capture most of the bias.
�erefore, three observers are designed: the default observer, a fully augmented observer,
and a one dimensional augmentation observer.
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Figure 3: Estimation errors using default and augmented observer in the simulation
study.

�e aim of this comparison is thus to conclude whether the proposed method works,
and is performed by analyzing the estimation errors from the three observers. �e
resulting Probability Density Functions (PDF) of the estimation errors are shown in
Figure 5 and mean and maximum absolute errors for the entire ETC are presented
in Table 1. From the data it is clear that the default observer has a bias and that the
augmented observers reduce the bias. Now comparing the two augmented observers it
is seen that the observer with only a one dimensional augmentation delivers close to the
same reduction in bias as the fully augmented observer.�is is a clear illustration that
the method succeeds in �nding the dominant bias in the model.

Benefits of Additional Sensor During Design

Another interesting question is what can be achieved by allowing extra sensors, compared
to what is used in the �nal observer, while estimating an augmentation.�e application
chosen is to estimate the exhaust manifold pressure with reduced bias compared to a
default observer without having a sensor measuring it.�at is, design an observer for
pem using feedback from pim and ntrb. �e analysis is performed by comparing the
estimates from two observers; one based on the augmentation

Âq = (−0.2610 −0.9648 −0.0329)T
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Table 1: Data from observers None – default observer, H† – fully augmented observer,
and Âq – observer using reduced dimension augmentation found using augmentation
estimation approach 3. All observers use feedback from all states.

States
Max abs. error Mean error

None H† Âq None H† Âq

pim[Pa] 5459 6840 6599 -985 11 37
pem[Pa] 14411 14277 14278 443 86 132

ntrb[rad/s] 0.8 0.7 0.6 0.005 -0.003 -0.007

Table 2: Static data from observers None – default observer, Āq – observer using aug-
mentation estimated using only measurements of pim, and ntrb, and Âq – observer using
augmentation estimated using measurements of all states. All observers use feedback
from pim, and pem only.

States
Max abs. error Mean error

None Āq Âq None Āq Âq

pim[Pa] 4191 3650 3641 -622 -80 -176
pem[Pa] 58758 58197 51322 6810 6328 -678

ntrb[rad/s] 0.1 0.1 0.1 0.02 0.004 0.006

Table 3: Dynamic data from observers None – default observer, Āq – observer using aug-
mentation estimated using only measurements of pim, and ntrb, and Âq – observer using
augmentation estimated using measurements of all states. All observers use feedback
from pim, and pem only.

States
Max abs. error Mean error

None Āq Âq None Āq Âq

pim[Pa] 5748 6828 6316 -533 2 -34
pem[Pa] 180279 177982 174486 16604 16479 8922

ntrb[rad/s] 0.9 0.6 0.5 0.02 0.0007 -0.001
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Figure 4: Measurements of pim, pem, and ntrb from the ETC used in the experimental
evaluation. Note that turbine speeds below approximately 2 100 rad/s are missing.�is is
due to the limited measurement range of the turbine speed sensor.

estimated using measurements of pim, pem, and ntrb, i.e. column one in (12), and another
based on an augmentation

Āq = (−0.9864 0 −0.1644)T

estimated using measurements of pim, and ntrb only.
�e two augmented observers are compared to the default observer and the results

are shown in Figure 6 and Table 2 and 3. Figure 6 shows the probability density function
for the estimation errors for the default observer, the observer based on the model
augmented with Âq , and the observer based on the model augmented with Āq . It
is seen that both augmented observers reduce the mean of the bias for pim and ntrb
compared to the default observer and that the observer based on the model augmented
with Âq signi�cantly reduces also the bias in pem. Table 2 and 3 show the mean and
maximum absolute estimation errors for selected stationary parts of an ETC and for
the entire ETC respectively. In both tables it is obvious that the observer based on a
model augmented with Âq signi�cantly reduces the estimation bias.�e mean error is
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Figure 5: Probability density functions for three observers: None – default observer, H† –
observer augmented with three states, and Âq – observer augmented with one state and
the estimated Âq .

reduced by approximately 50% during an entire ETC and by approximately 90% for
selected stationary parts, while the maximum absolute errors are almost una�ected.
�ese, quite large, di�erences in the di�erent measures are all explained by the fact that
the suggested method reduces stationary bias and, as can be seen in Figure 4 the ETC is
a rather dynamic sequence and the maximum absolute errors occur in transients.

7 Conclusions
A method for bias compensation in observers is developed.�e idea is to, based on mea-
surement data, compute a low dimension augmentation of the model that describes the
most signi�cant model biases.�is augmented model is used to design an augmented
observer that results in a state estimate with reduced bias. �ree main results are a
characterization of possible augmentations from observability perspectives, a parameter-
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Figure 6: Probability density functions for default and augmented observers applied to
real measurement data using feedback from pim and ntrb.�e two augmented observers
are Red. – augmentation estimated measuring pim and ntrb and Full – augmentation
estimated measuring pim, pem, and ntrb respectively.

ization of the augmentations from the method, and a robustness analysis of the proposed
augmentation estimation method.

�e method is successfully applied to a diesel engine with VGT and EGR, using a
non-linear default model and measurement data from an engine in a test cell. It is shown
that an augmentation according to the suggested augmentation procedure reduces the
mean estimation error, that is the bias, by approximately 50% in an ETC.
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A EngineModel and Data
�e model, on which the method is applied, is a third order non-linear state space model
of a six cylinder Scania diesel engine with VGT and EGR.�e model states are intake
manifold pressure, pim, and exhaust manifold pressure, pem, and turbine speed, ntrb.�e
inputs are injected amount of fuel, engine speed, VGT and EGR positions. It is based
on a model developed in Wahlström and Eriksson (2006) but slightly simpli�ed.�e
simpli�cations are that the states for the EGR mass fraction and actuator dynamics are
removed.

�e data is collected in an engine test cell at Scania CV AB in Södertälje, Sweden.
�e data is from a six cylinder Scania diesel engine with VGT and EGR and was collected
during an ETC.�e sensor signals used are; intake and exhaust manifold pressures,
turbine speed, and engine speed, and actuator signals used are; VGT and EGR positions,
and injected amount of fuel. All these signals are available on a standard engine, i.e. no
extra lab senors were used, and collected with a sampling rate of 100Hz.

B Proofs of Theorems 4.2 and 5.1
�eorem 4.2 Assume that (C , F) in (5) is an observable pair then the augmented system
(5) is observable if and only if

Ker ((F − I) (Aq NC)) = {0} ,

where the columns of NC span KerC.

Proof From�eorem 4.1 it follows that the augmented model (5) is observable if and
only if x = 0, q = 0 is the only solution to

Cx = 0 (13a)
(λI − F)x + (F − I)Aqq = 0 (13b)

(λI − I)q = 0 (13c)

for all λ ∈ C. For λ ≠ 1 it is immediate from (13c) that q = 0.�en the assumption that
(C , F) is an observable pair together with (13a), (13b), and�eorem 4.1 gives that x = 0.
�us, only λ = 1 needs to be investigated further.
For λ = 1 in (13) the augmented model is observable if and only if x = 0, q = 0 is the

only solution to

(F − I)(x − Aqq) = 0
Cx = 0.

http://dx.doi.org/10.1016/j.conengprac.2008.04.007
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Let the columns of NC be a basis for KerC, then x = NC ξ for some ξ and observability
is equivalent to q = 0, ξ = 0 being the only solution to the equation

(F − I)(NC ξ − Aqq) = 0.

�is is equivalent to that the matrix

(F − I) (Aq NC)

has full column rank which ends the proof. ◻

�eorem 5.1 Assume that the observer gain, K, is chosen such that the observer is strictly
stable and does not have any poles in the origin.�en, in absence of noise, the bias samples
are spanned by the rows of C and can thereby be written as

βt = CTΓ.

Proof Since Approach 1 only is applicable if C has full column rank and due to the
augmentation, C†, used in Approach 3 the theorem automatically holds for these cases.
It is therefore su�cient to prove the result for Approach 2.
Now, starting with the output error and rewriting it

rt = C(
W

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
I − F + KCF)−1(I − KC)(I − F)βt

= CW−1(W − KC)Aqq = (I − CW−1K)Cβt , (14)

where the assumption that K is chosen such that the observer system, (I − F + KCF), is
strictly stable and does not have any eigenvalues equal to zero which assures thatW−1

exists, is used.�en, using the pseudo inverse, (14) can be written as

Cβt = (I − CW−1K)†rt = r̄t . (15)

A unique solution to (15) is received by computing the minimum square solution with
least Euclidean norm. Writing

βt = βo
t + β⊥t , (16)

where

βo
t ∈ (KerC)⊥ = span{CT} (17)

and

β⊥t ∈ KerC , (18)

the solution with least Euclidean norm is the solution with β⊥t = 0, i.e.

βt = βo
t = CTΓ (19)

which concludes the proof. ◻
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Abstract

A method for bias compensation and online map adaptation using extended
Kalman �lters is developed. Key properties of the approach include the meth-
ods of handling component aging, varying measurement quality including
operating-point-dependent reliability and occasional outliers, and operating-
point-dependent model quality.�eoretical results about local and global ob-
servability, speci�cally adapted to the map adaptation problem, are proven. In
addition, a method is presented to handle covariance growth of locally unobserv-
able modes, which is inherent in the map adaptation problem.�e approach
is also applicable to the o�ine calibration of maps, in which case the only re-
quirement of the data is that the entire operating region of the system is covered,
i.e., no special calibration cycles are required.�e approach is applied to a truck
engine in which an air mass-�ow sensor adaptation map is estimated during a
European transient cycle. It is demonstrated that the method manages to �nd a
map describing the sensor error in the presence of model errors on a measure-
ment sequence not speci�cally designed for adaptation. It is also demonstrated
that the method integrates well with traditional engineering tools, allowing
prior knowledge about speci�c model errors to be incorporated and handled.

61
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1 Introduction

Modern control and diagnosis systems rely upon accurate information about the system
state. Determining the full state with direct measurements is not always possible as
sensors can be unavailable, impossible to install, or too expensive for the intended
application. Estimation schemes are therefore used, as they can o�en provide a cost-
e�cient means of obtaining the state (Colin et al., 2009). Such estimation schemes are
o�en based on a model of the process, but a fundamental disadvantage is that models
have errors.�e causes of these model errors can be quite varied; the errors can vary
with system’s operating point (Zimmerschied and Isermann, 2010), changes in ambient
conditions, the age of components (Rupp and Guzzella, 2010), etc., all of which a�ect
the error dynamics.�e variation in the system’s operating point has rapid dynamics,
approximately on the same order as the system itself during normal operation, while
the second and third causes above can present time constants ranging from hours up to
years, depending on the system and its location.

A common situation is that while the dynamics is well-captured by the model, sta-
tionary errors exist.�is situation will be referred to as a biased model and has been
observed in truck engines, for example (Höckerdal et al., 2008).�ere exist estimation
algorithms for operating-point-dependent biases, see for example Höckerdal et al. (2009)
and Lin and Bar-Shalom (2006), but they can not separately handle both the short-term
variations induced by normal changes in operating point and the long-term dri� caused
by component aging or changes in the environment. Instead, the engineer has to choose
which of these e�ects is most important and tune the observer accordingly.

A common technique to handle operating point dependencies in industrial applica-
tions is to introducemaps or look-up tables, see e.g., Guzzella and Amstutz (1998); Peyton
Jones and Muske (2009) for automotive applications and Horton (1997); Larsson et al.
(2009) for aerodynamic applications.�ese look-up tables provide information about
operating point dependencies for certain operating conditions, e.g., default ambient
conditions and the current state of system degradation, which changes over time.

For automotive applications in particular, look-up tables or maps are frequently used
to describe relations when physical models are unavailable, e.g., sensor and actuator
characteristics, cooler e�ciency, injector characteristics, and a�ertreatment systems.
�ese are examples in which maps bene�t from continuous online adaptation to prevent
undesired system behavior. Routines for online map adaptation have been considered
in Wu (2006); Peyton Jones and Muske (2009), and a primary contribution in the
present work is a systematic way to handle aging and other slowly-varying uncertainties.
Simultaneous bias compensation and online map adaptation are key properties of the
proposed method, which has industrial value because the method integrates well with
existing map-based solutions. Another interesting application is the o�ine calibration
of the engine control system with its variety of maps and parameters. In this process,
special system trajectories are o�en used when tuning the parameters. With the proposed
method, special system trajectories are not needed, and the only requirement on the
trajectory is that it spans the operating region of the system.
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Figure 1: Typical example of model output from a biased model (Höckerdal et al., 2008),
whereWref is the air mass-�ow measured by an additional, highly accurate, reference
sensor available in the engine test cell.

2 Method Outline
A systematic approach to designing an observer that adapts parameterized functions
(maps) online while reducing stationary errors in a model is developed. �e starting
point is a default model, in discrete-time state-space form,

xt+1 = fdef(xt , ut)
yt = h(xt),

(1)

where x ∈ Rnx are the states, u ∈ Rnu the inputs, and y ∈ Rn y the outputs, that su�ers
from stationary errors, see Figure 1 for an example.�ese model errors can exhibit both
fast and slow dynamics, arising from, for example, operating-point-dependent bias and
aging.

�e goal is to handle these errors in an integrated way, and this is achieved by
extending (1) with a parameterized function,

qfcn(xt , ut , θ t), (2)

and augmenting the state vector with the parameter vector, θ ∈ Rnθ , in the following way

θ t+1 = θ t

xt+1 = f (xt , ut , qfcn(xt , ut , θ t))
yt = h(xt).

(3)

�e idea with a construction like this is to capture the operating point dependence of
the bias by the parametrization (2), and use the parameters, θ, introduced as new states,
to track the aging. With (3) as a basis, any non-linear observer design technique can be
applied, to design an observer that estimates the augmented state vector, (x , θ).



64 Paper B. EKF-Based Adaptation of Look-Up Tables . . .

�e following example of a parameterized function qfcn, from an automotive applica-
tion (Höckerdal et al., 2008), serves as motivation for the work and will be used later in
the evaluation.

Example 1 In a heavy duty diesel engine with exhaust gas recirculation (EGR) and a
variable geometry turbocharger (VGT), the air mass-�ow through the compressor is
vital information for safe and clean engine control. �erefore, the engine is typically
equipped with a mass-�ow sensor. However, the sensor signal is subject to an operating-
point-dependent error, due to the sensor installation and local �ow �elds, and this
measurement error has to be compensated for before use by the engine control unit
(ECU).�e relationship between the measured air mass-�owWmeas and the true air
mass-�owW can be stated as

Wmeas = (1 + qfcn(W , θ))W

where the function qfcn is presented graphically in Figure 2.W i are the grid points, and
θ i are the corresponding correction parameters. Note that there exist several ways of
computing the true air mass-�ow and three of them are; i) to compute the mass-�ow into
the engine using intake air density and engine speed, which during stationary operation
is equal to the measured air mass-�ow, ii) to assume that the air mass-�ow sensor give
accurate measurements, or, iii) to install a reference sensor. Which approach is chosen
depends on the application and is determined by which is most reliable among those that
are available. Here, where a reference sensor is not available, the modeled air mass-�ow
into the engine is considered to be the most accurate (Höckerdal et al., 2008) and is
used as a reference air mass-�ow. In this case, the sensor model is represented by a 1-D
linear interpolation map, whereW lies between the grid pointsW i ≤ W ≤ W i+1 and
the interpolation is de�ned by

qfcn(W , θ) = θ i + (θ i+1 − θ i)
W i+1 −W i ⋅ (W −W i). (4)

Due to aging, it is necessary to adapt this map, see Höckerdal et al. (2008) for a longer
discussion. ◇

Note that with construction (3), using parameters to track aging, the observer stores
information about the operating point dependent errors, i.e., the parameters act as a
memory.

�e development of a model like (3) for estimation and identi�cation entails that
some new issues have to be addressed.�e main concern in this paper is how to update
the function parameters θ t in a controlled manner. Sections 3 and 4 treat this issue with
respect to observability and observer tuning, respectively. Here, the parameterization of
qfcn is given, and the interested reader is referred to, for example Haber and Unbehauen
(1990) or Lind and Ljung (2008) for a discussion on how to �nd a structure and suitable
regressors.

�e system (3) is in standard state-space form, whichmeans that any suitable observer
design can be applied, and a stochastic �lter is chosen in this work. Example approaches
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Figure 2: Air mass-�ow sensor error map with the grid points denoted by the pair
(W i , θ i) corresponding to a correction factor θ i at a mass-�ow ofW i .

to estimating states while at the same time handling unknown parameters are to apply a
joint parameter-and state-estimating extended Kalman �lter (EKF) (Kopp and Orford,
1963), or an unscented Kalman �lter (UKF) (Wan et al., 2000). An advantage of stochastic
�lters compared to deterministic observers is that an estimate of the error statistics is
computed in addition to the state estimate.�e estimation error statistics are used in the
computation of the �lter feedback gain, which gives the stochastic �lters natural tuning
parameters that allow the �lter to be tailored to handle system aging, unknown state
initialization, a time-dependent model and measurement quality, outlier rejection etc.;
see Section 4 for the discussion. Either the EKF or the UKF can be used, and since the
EKF is a widely used standard method, which proved to be su�cient for achieving the
results, the joint state and parameter estimating EKF is used.

3 Observability
In estimation, the observability or detectability of the system at hand is central to ensure
correct and consistent estimates. �e observability criterion states whether it is at all
possible to reconstruct the model states from measurements, and this section is devoted
to the observability of (3), where qfcn represents linear interpolation.�e observability
analysis is conducted on the continuous-time system,

θ̇ = 0
ẋ = f c(x , u, qfcn(x , θ))
y = h(x),

(5)

corresponding to (3).�e results are valid also for the discrete-time system as long as
the sampling time is small enough (Kalman et al., 1963). �e analysis is based on the
de�nitions of observability in Hermann and Krener (1977), and Besançon (2007).
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Intuitively, a system of linear or higher order interpolations with parameter states as
the interpolation grid points is not locally observable.�is insight can be understood by
considering the air mass-�ow adaptation map in Example 1. First, considering the total
system and assuming more than one interpolation interval, this point can be understood
by the intrinsic nature of the interpolation. Because not all parameters are involved
in the interpolation computation at each operating point, some parameters are always
locally unobservable. However, even if only one interpolation interval is studied and
the non-interacting parameters are disregarded, e.g., consider only the shaded region of
Figure 2, the ordinary rank condition, stating su�cient conditions for observability, is
insu�cient to assess the local observability of the reduced system.�is is illustrated in
Example 2.

Example 2 Consider a model that contains linear interpolation, with a single interpo-
lation interval, in the measurement equation, de�ned by the grid points (0, θ0) and
(1, θ1),

˙̄x =
⎛
⎜
⎝

ẋ
θ̇0
θ̇1

⎞
⎟
⎠
=
⎛
⎜
⎝

ax
0
0

⎞
⎟
⎠
= f̄ c(x̄) (6a)

y = h(x̄) = cx + θ0 + x(θ1 − θ0). (6b)

From (6b) it can be seen that, with su�cient level of excitation, the variables x, θ0 and θ1
can be determined from the measurements y. However, the observability rank condition
for (6) becomes

∂
∂x̄

⎛
⎜⎜⎜⎜
⎝

h(x̄)
L f̄ ch(x̄)

⋮
Lp
f̄ c
h(x̄)

⎞
⎟⎟⎟⎟
⎠

RRRRRRRRRRRRRRRRRRRx̄=(
x
θ0
θ 1
)

=
⎛
⎜⎜⎜
⎝

1 0 ⋯ 0
0 a ⋮
⋮ ⋱ 0
0 ⋯ 0 ap

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

c + θ1 − θ0 1 − x x
c + θ1 − θ0 −x x

⋮ ⋮ ⋮
c + θ1 − θ0 −x x

⎞
⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rank=2

which clearly is rank de�cient. ◇

Hence, direct use of the rank condition for assessing the local and global observability
of (5) is not possible. To ensure global observability of (5), a trajectory that spans the
interpolation grid, and ful�lls the conditions in�eorem 3.1, has to be considered.

�e analysis is performed by �rst establishing the local observability of (5) at an
operating pointwithin a single interpolation interval, i.e., where the interpolation variable,
y2, is in, I i =]y i2 , y i+12 [. By disregarding the non-interacting parameters for the case in
which a 1-D linear interpolation is used and the interpolation variable h2(x) = y2 is
measured, i.e.,

qfcn(y2 , θ i , θ i+1) = θ i + (θ i+1 − θ i)
y i+12 − y i2

⋅ (y2 − y i2), (7)
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model (5) becomes

θ̇ i = 0
θ̇ i+1 = 0

ẋ = f c(x , u, qfcn(y2 , θ i , θ i+1))

y = (y1y2
) = (h1(x)h2(x)

) = h(x).

(8)

�en global observability is established by considering a trajectory that passes through
all interpolation intervals. Even though the formal analysis only applies to this particular
case, it gives insight into more general cases.

�e global observability of (5) is assessed using the result below on the local observ-
ability of (8). To state the result, introduce the notation

A = ∂ f c

∂x
∣
z̄0
, Bq =

∂ f c

∂qfcn
∣
z̄0

, C = ∂h
∂x

∣
z̄0
,

where
z̄0 = (xT0 uT

0 qTfcn, 0)
T ,

is a linearization point and denote the numerator polynomials of (pI −A)−1Bq by bq(p),
where p is the di�erentiation operator.

�eorem 3.1 Model (8) with qfcn de�ned by (7) is locally observable in z̄0 on a smooth
trajectory (y, u) in I i , containing the stationary point z̄0, if ẏ2 ≠ 0, bq(p)y2 ≠ 0, the pair
(C ,A) is observable and the matrix

(−A Bq
C 0 )

has full column rank.

Proof See Appendix A. ◻

Remark 3.2 Requiring ẏ2 ≠ 0 is natural since the trajectory must move in the interval I i
for the parameters to be visible. Requiring bq(p)y2 ≠ 0 says that the trajectory must not
be canceled by the zero dynamics, which is also natural but can be seen as technical and
seldom limiting.

Even though introducing qfcn into the system model is rather general, the interpola-
tion variable must still be measured. However, for a system of the form

θ̇ i = 0 (9a)
θ̇ i+1 = 0 (9b)

ẋ = f c(x , u) (9c)
y1 = h1(x) (9d)
y2 = qfcn(h2(x), θ i , θ i+1) (9e)



68 Paper B. EKF-Based Adaptation of Look-Up Tables . . .

the su�cient conditions for observability can be stated without having a measured
interpolation variable.�e system considered in Example 1 falls into this model class.
Let C1 be ∂h1(x)/∂x evaluated at x0.�en, a su�cient observability condition is given
by the following result:

�eorem 3.3 Model (9) where qfcn is de�ned by (7) and is locally observable in z̄0 on a
smooth trajectory (y, u) in I i , containing the stationary point z̄0, if d

dt h2(x) ≠ 0, and the
pair (C1 ,A) is observable.

Proof See Appendix A. ◻

With the results regarding observability in a given interpolation interval in�eorems 3.1
and 3.3, it is straightforward to state global results. For�eorem 3.1, the global result is
given in Corollary 3.4, and for�eorem 3.3, global results can be stated in a similar way.

Corollary 3.4 (Global observability) If there exists a trajectory such that y2 ranges over
∪i I i and�eorem 3.1 is ful�lled in each interval, then (5) is globally observable with respect
to that trajectory.

Proof Given a trajectory ful�lling Corollary 3.4,�eorem 3.1 can be applied to each
interval, I i , which ensures the observability of (x , θ i , θ i+1) within each interval. As this
is true for all intervals, x and θ = (θ 1 . . .) are observable. ◻

Finally, observability does not depend on the choice of discretization method as long
as the sampling time is chosen small enough (Kalman et al., 1963).�is together with
�eorem 3.1/3.3 andCorollary 3.4 for the continuous-time system (5) implies observability
of the corresponding discrete-time system (3).
Even though the analytical results of this section only state what is required in

the case of a 1-D map on which the output is computed using linear interpolation, it
is reasonable to assume that similar results exist for the cases of non-measured but
observable interpolation variables, bilinear interpolation or higher-order interpolation
algorithms.

3.1 UnobservableModes and Covariance Growth
According to the previous paragraph, at any given time in systems like (3), there are
generally some parameters θ i that are locally unobservable.�e estimation error covari-
ance matrix of EKF/UKF observers based on systems with locally unobservable states
grows linearly for the unobservable states if system noise is present in those modes.
�at is, in regions where the system seldom operates, the estimation error covariance
matrix coe�cients that correspond to the locally unobservable parameter states will grow
linearly.�e e�ects of this covariance growth is two-sided: i) it o�ers a way to rapidly
update old parameters while protecting frequently updated parameters from spurious
measurements, ii) it may cause numerical problems that a�ect the �lter’s stability over
the lifetime of the system, i.e., covariance matrix divergence, which must be handled.
�e latter has previously been discussed in e.g. Gustafsson (1997) where the solution is to
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stop the update of the covariance matrix elements if the system excitation is poor which
also is the solution used here.

Example 3 Amodel that contains a parameterized function describing a linearly inter-
polated map in the measurement equation, similar to the system in Example 1, is used to
illustrate the linear growth of the covariance estimate P in an EKF. An analysis of the
equations describing the evolution of the feedback gain and estimation error covariance
gives insight into the growth of the estimation error covariance

Kt = Pp,t−1CT
t (CtPp,t−1CT

t + R)−1 (10a)

Pu,t = Pp,t−1 − Pp,t−1CT
t (CtPp,t−1CT

t + R)−1 CtPp,t−1
= Pp,t−1 − KtCtPp,t−1 (10b)

Pp,t = AtPu,tAT
t + Q . (10c)

Here Kt is the Kalman gain, Pu,t and Pp,t are the estimation error covariance estimates
in the update and prediction steps of the EKF, respectively, and Q and R are the system
and measurement noise covariances, respectively.�e property of locally unobservable
parameter states is demonstrated using diagonal P0, Q, R and a linearly interpolated 1-D
map in the system measurement equation.
Consider the following partition of the state vector

x̄ = (xT θT
o θT

u )
T ,

where x is the state vector in the original model, θo are parameter states that have been
observed, and θu are the parameter states that are not observed. Start in time step t with

Pp,t−1 =
⎛
⎜
⎝

∗nx×nx ∗nx×nθo 0
∗nθo×nx ∗nθo×nθo 0
0 0 Dnθu×nθu

t−1

⎞
⎟
⎠
,

Ct = (∗n y×nx ∗n y×nθo 0)

At = (∗
nx×nx 0
0 Inθ×nθ

) ,

whereDt−1 on the diagonal of Pp,t−1 is a diagonal matrix corresponding to unobserved pa-
rameter states, and the zero inCt corresponds to parameters not used in the interpolation
in time step t, i.e., with

y = h(x) + qfcn(x , θ),

Ct = ( ∂h
∂x +

∂qfcn
∂x

∂qfcn
∂θo

∂qfcn
∂θu

)∣
x̄=x̄ t

= (∗ ∗ 0)

which can be compared to the bright and shaded regions of Figure 2. Now (10a) becomes

Kt =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 Dt−1

⎞
⎟
⎠

⎛
⎜
⎝

∗
∗
0

⎞
⎟
⎠
(∗) =

⎛
⎜
⎝

∗
∗
0

⎞
⎟
⎠
,
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that is, due to the zero in Kt , the unobservable states θu are not updated. Further, (10b)
becomes

Pu,t =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 Dt−1

⎞
⎟
⎠
−
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 0

⎞
⎟
⎠
=
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 Dt−1

⎞
⎟
⎠
,

i.e., the estimation error covariance for the unobserved parameter states is not reduced.
Nevertheless, due to (10c), a linear increase in the estimation error covariance is obtained

Pp,t = AtPu ,tAT
t + Q =

⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 Dt−1

⎞
⎟
⎠
+
⎛
⎜
⎝

Qx 0 0
0 Qθo 0
0 0 Qθu

⎞
⎟
⎠
.

�is shows that Dt = Dt−1 + Qθu , and it can be concluded that the covariance matrix
coe�cients corresponding to areas within the system operating region in which the
system does not operate will increase linearly over time. ◇

�is e�ect is also illustrated in Figure 3, where the variance of three parameter
states, θ5, θ8, and θ 10 from Figure 2 is plotted versus time. In Figure 3a, parameter θ5
corresponds to a parameter that is not observed at all during the studied trajectory, while
the parameter θ8 is observable during the �rst half of the trajectory and unobservable
during the second half.�is behavior is reversed for θ 10; it is �rst unobservable and then
observable.
Returning to the application of engine map adaptation, experiences indicate that

adaptation algorithms, not using the EKF and joint parameter and state estimation,
have problems concerning parameter aging and occasional spurious measurements.
For example an engine, whose trajectories during normal operation, does not span
the entire parameter space and only occasionally enters some areas, may su�er from
undesired system behavior caused by old parameters corresponding to those seldom
visited operating points. Many of today’s adaptation schemes apply the same adaptation
algorithm in each update step and do not adjust the update procedure with respect to
when the parameters were last updated (Wu, 2006; Peyton Jones and Muske, 2009). In
these cases, a linearly growing uncertainty for seldom updated parameters enables a
fast parameter update rate of old parameters without risking large errors in the state
estimates.�is can in some sense be thought of as a dynamic forgetting factor similar
to recursive least square (RLS) techniques and is a highly desirable property in engine
adaptation algorithms not only to handle aging parameters but also to protect updated
parameters.
A�er discussing the positive e�ects introduced by the locally unobservable parameter

states it remains to discuss how to ensure stable observer operation even though some
parameter states never may become observable, causing the corresponding covariance
matrix elements to grow without bound. A direct and intuitive way of handling this
linear growth of estimation error covariance of the locally unobservable parameter states
is to introduce an upper limit for the corresponding estimation error covariance matrix
elements. A possible such upper limit is the initial error covariance matrix, P0. Since
it is desirable to limit the estimation error covariance of only the locally unobservable
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Figure 3:�e �gure shows the development of the estimation error variance for three
parameter states. One that is unobservable during the entire trajectory – θ5, one that
is observable for the �rst half of the trajectory – θ8, and one that is observable for the
second half of the trajectory – θ 10.
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parameters it is appropriate to perform the limitation element wise, i.e. compare Pi , i to
P0 i , i , and limiting Pi , i by setting Pi , i = P0 i , i when Pi , i ≥ P0 i , i . It is straightforward to
show (Jaynes, 1996, Appendix E) that the o�-diagonal elements in P do not a�ect the
estimation error covariance for a single parameter, and with P0 as an upper limit, the
introduction of yet another tuning parameter is avoided.�e e�ect of this is discussed
in Section 5.3 and illustrated by simulation in Figure 10.

4 Parameter and Bias State Convergence Rates
�is section brie�y describes the di�erence between the proposed approach and existing
(Bembenek et al., 1998; Höckerdal et al., 2009) approaches for reducing operating point
dependent biases. Especially accentuated are the bene�ts of using stochastic observers
for the locally unobservable models used in the new approach.

�e developed approach di�ers from other approaches to reduce operating point
dependent estimation errors such as the method presented in Höckerdal et al. (2009) in
which the state vector is augmented with a bias state that is used directly to describe the
model error,

xt+1 = f (xt , ut , qt)
qt+1 = qt
yt = h(xt).

(11)

A primary di�erence is that an observer based on (3) facilitates separate tracking of fast
changes in operating point and slower changes due to aging. For an observer based
on (11), this is not possible and it is necessary for the bias state to change approximately
as fast as the system dynamics. Otherwise, the observer will not be able to track a
change in the system’s operating point. However, a rapidly changing bias state will also
capture high-frequency disturbances, and will therefore not be able to withstand spurious
measurements to the same extent as slower parameter states.�is concern is one reason
that makes the bias state in this method unsuitable for engine map adaptation.
In an observer utilizing a parameterized function to describe the bias, the dynamics

of the parameter states is determined by the system aging, which is substantially slower
than the dynamics of a bias state that has to track changes in the system’s operating point.
�is makes the observer based on a model containing a parameterized function or map
less sensitive to temporary disturbances than an observer using a one-state description
of the bias. However, both methods can be used to �nd an adaptation map: the �rst
estimates it directly and the latter does so a�er some post-processing like mean value
computations, making it less suitable for online applications.
Another issue, which is to some extent straightforwardly handled by stochastic �lters,

is initialization of the unknown bias or function parameters. By properly tuning the
corresponding elements in the estimation error covariance matrix, P0, temporarily faster
convergence of unknown bias or function parameter states can be achieved.�at is, due
to the initially faster convergence rate of unknown parameters, see Section 3.1, a rapid
convergence of otherwise quite slow parameter states can be achieved in the same way
that old parameters are allowed a faster convergence rate.



5. Method Evaluation 73

5 Method Evaluation
Two studies are performed to evaluate the method, a simulation study and a study
utilizing experimental data, in which the aim is to adapt the air mass-�ow sensor in a
diesel engine characterized by a 1-D adaptation map.�e simulation study shows the
convergence of the approach and the evolution of the adaptation map and includes an
investigation of the e�ects of incorrect noise models when using the EKF as a parameter
estimator (Ljung, 1979).�e experimental study shows the results of applying themethod
to experimental data with the aim of analyzing the robustness and performance in the
presence of model errors. Since the approach in some sense supplies a solution to the
problem of biased default models solved in Höckerdal et al. (2009), the performance of
that approach is presented as a comparison.
In both studies, the non-linear model of a heavy-duty diesel engine developed in

Wahlström and Eriksson (2006) is used together with measurements from an engine in
an engine test cell.�emodel has three states, intake and exhaust manifold pressures, and
turbine speed, all of which are present in the model output along with the air mass-�ow
through the compressor.�e data used are collected during a European transient cycle
(ETC) (Council of European Parliament, 2005).

5.1 Observers
�ree observers are designed and evaluated both in simulation and on experimental
data.�e observer designs are: An EKF directly based on the default model developed
in Wahlström and Eriksson (2006),

xt+1 = f (xt , ut)

yt = (xntrb ,t hW(xt))
T ,

(12)

referred to as Def. An EKF with an extra bias state introduced in the measurement
equation to describe the air mass-�ow measurement error from the method developed
in Höckerdal et al. (2009),

xt+1 = f (xt , ut)
qt+1 = qt

yt = (xntrb ,t hW(xt) + qt)
T ,

(13)

referred to as Aug. A joint state and parameter estimating EKF based on the default
model and a parameterized bias,

xt+1 = f (xt , ut)
θ t+1 = θ t

yt = (xntrb ,t (1 + qfcn(hW(xt), θ t))hW(xt))
T ,

(14)

referred to as Map. in which the parameterization of qfcn is presented in Figure 2.�e
primary di�erence between the three observers are schematically presented in Figure 4,
where the feedback part of each observer is highlighted.
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�e models (12)–(14) on which the three observers are based are observable, which
is established using the ordinary observability rank condition for models (12) and (13),
and�eorem 3.3 together with Corollary 3.4, for model (14).
In the simulation study, all observers only use feedback from the air mass-�ow and

turbine speed sensors, whilst in the experimental evaluation, feedback from all sensors
except the exhaust manifold pressure sensor is used. Even though the Def. and Aug. mod-
els are observable from any of the outputs, and the trajectory is such that the interpolation
grid is spanned for theMap. observer, the model errors are such that augmented feedback
is needed in the experimental evaluation to improve the estimation performance.�e
performance is evaluated with respect to all states and outputs, i.e., intake and exhaust
manifold pressures, turbine speed, and air mass-�ow through the compressor.

5.2 Observer Tuning
As in all observer applications, the tuning process is a delicate task.�e main objective
is to balance the rate of convergence and the smoothing e�ects, i.e., the stability and
measurement noise sensitivity, of the observer.
In the case of an EKF, the tuning is performed in terms of the system, measurement,

and initialization uncertainties.�is is done by introducing noise terms to the system
description

xt+1 = f (xt , ut) +wt

yt = h(xt) + vt ,

where wt and vt are independent white noise processes with covariance matrices

Q = TQQtuneTT
Q , and R = TRRtuneTT

R ,

where TQ and TR denote scaling matrices, and the initial state x0 is assumed to be a
random vector with covariance matrix P0 (Kailath et al., 2000).
With this de�nition, all observers in both studies are tuned with equal respect to all

parameters except the variance of the bias and parameter driving noises, which is done
in accordance with Section 4.�at is, all three observers have the same measurement
noise R, and the same system noise corresponding to the default states x, i.e., the nx × nx
upper le� block of Q.�e di�erence in bias modeling between Map. and Aug. produces
an nq ×nq lower right block in Q for Aug. that is a thousand times larger than the nθ ×nθ
lower right block of Q in Map.�is di�erence is due to the di�erent dynamics of the bias
and parameter states. With this tuning, both Aug. and Map. are able to track the bias
with approximately the same performance, while Map. also estimates a sensor error map.

5.3 Study 1: Simulation
�e simulation study serves three purposes: i) to illustrate the convergence of the ap-
proach, ii) to study the adaptation map evolution, and iii) to evaluate the e�ects of
incorrect noise assumptions (Ljung, 1979).
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Figure 4: Schematics that highlight the feedback part of the three studied observers,
Def., Aug., and Map.�e main di�erence between the three con�gurations are shown
in the block on the Ŵair feedback signal, below the h(x̂) block. To the le� the inputs
and feedback signals are shown, and to the right the four evaluation outputs are shown.
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Figure 5: Simulation set-up with sensor error from Höckerdal et al. (2008).
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All three utilize the simulation set-up presented in Figure 5 to create the data.�e data
are created by simulating the model with input data from the European transient cycle
(ETC) segment, presented in Figure 6 and introducing arti�cial system andmeasurement
noises with covariances ofQ and R, respectively.�e segment is chosen to contain a wide
range of air mass-�ows such that a trajectory for which the system is globally observable
is created. To simulate incorrect air mass-�ow measurement a 1-D sensor error map is
used in the simulation and adjusts the air mass-�ow according to

Wmeas = (1 + qfcn(Wtrue , θtrue))Wtrue ,

where qfcn(Wtrue , θtrue) is the engine map presented in Figure 2.�e distorted air mass-
�ow,Wmeas, is then used for feedback to the observers.

Convergence rate

One property of the estimation bias correction method developed in Höckerdal et al.
(2009) is that, because no information about the bias at each operating point is saved,
the observer convergence rate depends on the dynamics of the bias states.�e extension
presented here uses a parameterized function, and when the parameters are adapted, the
convergence rate of the observer will not be dependent on the dynamics of the parameter
states.
To analyze and compare the convergence rate of observers using parameterized bias

to observers utilizing bias states is a di�cult task because the convergence rate is highly
dependent on the observer tuning. Since the maximum errors occur in transients, see
the transient at the time 5 s in Figure 7 for an example, they give an indication on how
well the estimator is able to track transient behavior. Figure 7 presents the estimation
errors fromAug., where the bias state has been tuned to be too slow and does not manage
to track the change in bias. As references the estimation errors fromMap. and Def. are
also presented. Since a bias state has to be approximately as fast as the system dynamics
and the parameters as fast as the system aging, observers tuned with these aspects in
mind will have about the same performance with respect to estimation quality during
normal operation, which is con�rmed in Table 1. Nevertheless, because the bias state is
allowed to change much faster than the parameter states, an Aug. observer will be more
sensitive to disturbances, e.g., outliers, as mentioned in Section 4. An observer using a
parameterized function with slow parameters does not allow disturbances to a�ect the
estimation of the model or parameter states to the same extent as an observer with a bias
state, i.e., the observer has a stronger smoothing e�ect.
Figure 8 shows the true and estimated map fromMap. and the correction made by

the slowly varying bias from Aug. computed according to

r = q̂t
ŷt − q̂t

.

From this �gure it is obvious that Map. manages to estimate a correction map of a cycle
not specially designed for map adaptation without any post-processing. Additionally, the
correction made by Aug. captures the true map but some post-processing, for example
mean value computations, is needed to get a map that can be used for interpolation, etc.
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Figure 6: Simulated states and outputs from the ETC segment used in the experimental
evaluation. �e true states and outputs are plotted with solid lines and the distorted
output used for feedback is plotted with a dotted line.
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Figure 8: Mass-�ow correction estimated by Aug. and Map.

Table 1: Def., Aug. and Map. estimation error.

Meas. Max abs. error Mean error

Def. Aug. Map. Def. Aug. Map.

pim[Pa] 13901 1156 1075 2521 47 46
pem[Pa] 13482 1071 999 2383 43 42
ntrb[rpm] 3118 446 432 769 23 22
Wair[kg/s] 0.02 0.003 0.003 0.003 0.00007 0.00006

Adaptation map evolution

In an application where the method is used for engine map adaptation it is important that
themethod converges. Since themodel description probably never will be entirely correct,
it is impossible to converge to something that can be called the true map. However, for
simulated data this can be achieved. Figure 9 shows the evolution of the adaptation map
over time.�e parameters are all initiated to zero, indicated by the straight line at time
t = 0, and converges to the true map as the operating region is spanned.
In Table 1 it is seen that all measures, both maximum and mean, are approximately

the same for Aug. and Map. for all system outputs, while Def. has signi�cantly larger
errors. From this it can be concluded that the estimation performance with respect to
the default states and outputs is similar for the two observers Aug. and Map. However,
Map. also automatically estimates a map that describes the air mass-�ow sensor error,
which can be used by other algorithms or functions in the engine control unit (ECU).
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Figure 9: Adaptation map evolution showing fast convergence.

Figure 10 shows how the estimation error covariance is updated. In the �gure the
parameter noise covariance has been increased by a factor of 105 compared to simulation
results presented in Figures 8 – 9, and Table 1 to clearly illustrate the growth in variance of
the locally unobservable parameters. Notice that the estimation error covariance matrix
element corresponding to a locally unobservable parameter grows linearly until it reaches
the upper bound de�ned by P0, in agreement with the discussion in Section 3.1. However,
for short time periods, like the ones simulated here, this linear growth of estimation
error covariance is hardly a problem whilst it might become a problem when considering
the entire lifetime of an engine.

Noise model sensitivity

Ljung (1979) presents a theoretical analysis of the EKF as a parameter estimator and
concludes that the parameter estimates will be biased if an incorrect noise description is
used.
Inspired by this theoretical analysis and the fact that true nature of the noise seldom is

completely known a simulation study is performed with the aim to analyze the in�uence
of incorrect noise assumptions.�e analysis is executed by applying the above designed
observers to several sets of simulated data where the system and measurement noise
variance and color had been adjusted. Neither of these simulations show of any problem
of consistent convergence of the sensor error parameters.
Even though the analysis in the studied case does not indicate this to be an issue

the potential problem cannot be discarded in general. Even if the main purpose of the
parameters is, as in the engine applications addressed here, their function as a memory
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Figure 10: Evolution of the variance for three parameter states. Here the variance of the
parameter noise is signi�cantly increased compared to the observer which estimation
error is presented in Table 1.

there exist applications where this is an issue. In such cases it is straightforward to use
the in Ljung (1979) modi�ed EKF algorithm for improved convergence properties.

5.4 Study 2: Experimental data
To assess the performance and robustness of the method an evaluation using measure-
ments from an engine in an engine test cell is conducted. Since in this case there are
other signi�cant model errors present, besides the air mass-�ow sensor error, an extra
bias state is introduced to improve the state estimates.�e additional bias state, com-
plementing those for handling the measurement error, is introduced according to the
ideas in Höckerdal et al. (2009).�e purpose is to reduce the estimation errors due to a
known error in the compressor model causing incorrect prediction of the compressor
mass-�ow, i.e. for Def.

xt+1 = f (xt , ∆W ,t , ut)
∆W ,t+1 = ∆W ,t

yt = (xpim ,t xntrb ,t hW(xt , ∆W ,t))
T .

With the introduction of an extra state, compensating for the compressor mass-�ow,
the estimate of the intake manifold pressure becomes signi�cantly better at the expense
of the exhaust manifold pressure estimate, while the estimates of turbine speed, and air
mass-�ow is almost una�ected, see Figure 11 and Table 2.
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Table 2: Mean estimation error using experimental data for Def., Aug. and Map.

Meas. With ∆Wcmp,t Without ∆Wcmp,t

Def. Aug. Map. Def. Aug. Map.

pim[Pa] 4208 169 -210 13875 13176 13019
pem[Pa] -10987 -13746 -14420 -2339 -3454 -3450
ntrb[rpm] 69 16 29 -57 -19 5
Wair[kg/s] 0.008 -0.020 -0.020 0.031 0.035 0.035

In Section 4 the tuning of Aug. and Map. are discussed, especially the di�erent
philosophies of the bias describing states—the relatively fast bias state in Aug. and the
slow map states in Map. In Figures 11 and 12, and Table 2 the similarity in estimation
performance between Aug. and Map. is striking, which is an expected result.�e mean
estimation errors for pim and ntrb are reduced while the mean estimation errors for pem
andWcmp are slightly increased. �e biggest bene�t compared to Def. though is that
the estimation errors become denser, see Figure 11a.�at is, in the absence of outliers
Aug. and Map. are comparable with respect to output estimation performance. �e
bene�t with Map. is that it produces an adaptation map.
From Figure 12 it is seen that even though there are unknown model errors present,

besides the compressor mass-�ow, the method manages to estimate a map that describes
the di�erence between modeled and measured air mass-�ow through the compressor
well. Figure 12a shows the correction factor between modeled and measured air mass-
�ow, similar to what was observed in Figure 8, and Figure 12b shows the adaptation map
estimated by Map. and how the grid is spanned by the experimental data. Notice that
there are a large number of samples at air mass-�ows slightly below 0.2 kg/s and that
very few of these samples represent stationary operation.
Finally, all of these results show that an adaptationmap can be estimated even though

the data are from a highly transient ETC not speci�cally designed for air mass-�ow
sensor adaptation.

6 Conclusions
Inmodern control and diagnosis systems,model-based estimation has achieved increased
attention. Especially interesting are techniques designed to handle the inevitable model
errors. A technique common in engine applications is the use of adaptation maps that
describe themodel errors. Amethod for storing bias information fromdi�erent operating
points, based on the EKF as parameter estimator, is developed and investigated.�is
method achieves simultaneous estimation of original model states and parameters and
also applies to adaptation of engine maps.
An inherent property of the adaptation of parameterized functions (maps) is that

the system is locally unobservable.�is has been analyzed, and a main contribution is
a test for observability of systems with 1-D linearly interpolated map and measured or
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ŷ−q̂ – stat
Final Map

0 0.1 0.2 0.3 0.4 0.5 0.6

−40

−20

0

20

Air mass-�ow – [kg/s]

C
or
re
ct
io
n
fa
ct
or
–
[%
]

Adaptation map

(a) Aug. air mass-�ow correction and �nal map estimated by Map.

0 0.1 0.2 0.3 0.4 0.5 0.6

−40

−30

−20

−10

0

10

Air mass-�ow [kg/s]

C
or
re
ct
io
n
fa
ct
or
[%
]

Adapted map and number of samples

0
0.5
1

×104

N
um
be
ro
fs
am
pl
es

Correction factor
Number of samples

(b) Final map plotted on a color map of the distribution of the air mass-�ow correction from
Aug.

Figure 12: By Aug. and Map estimated mass-�ow correction.



86 Paper B. EKF-Based Adaptation of Look-Up Tables . . .

observable interpolation variable.�e observability analysis also gives insight into what
applies to more general interpolation maps, such as bilinear interpolation, splines, etc.
Stochastic observers together with a parameterized bias that have locally unobserv-

able states is in fact an asset that handles seldom updated parameters and gives robustness
against occasional spurious measurements in ordinary map adaptation algorithms.�e
linear growth of estimation error covariance, which comes as a result of local unobserv-
ability of the parameters, also forms a potential numerical problem for the observer, and
a way to limit this growth without introducing extra tuning parameters is provided.

�e method shows promising results in a simulation study, where it manages to
estimate the engine states while at the same time estimating a parameterized air mass-
�ow adaptation map. An experimental evaluation shows that the method achieves
the same estimation quality with respect to mean and maximum absolute error, as the
method developed in Höckerdal et al. (2009) does, but adds value in that an engine
adaptation map can be simultaneously estimated as well. Furthermore, the successful
demonstration on experimental data, which inevitably introduces unknown model
errors and noise, shows the robustness of the method. In the experimental evaluation it
is also demonstrated that the method integrates well with traditional engineering tools,
allowing prior knowledge of speci�c model errors, like the compressor mass-�ow, to
be incorporated and handled by the method.�e method achieves simultaneous state
estimation andmap adaption, without using test cycles especially designed for adaptation,
and it is therefore also suitable for o�ine calibration of maps.
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A Proofs of Theorems 3.1 and 3.3
�eorem 3.1 Model (8) with qfcn de�ned by (7) is locally observable in z̄0 on a smooth
trajectory (y, u) in I i , containing the stationary point z̄0, if ẏ2 ≠ 0, bq(p)y2 ≠ 0, the pair
(C ,A) is observable and the matrix

(−A Bq
C 0 )

has full column rank.

Proof Since the interpolation variable, y2, is measured it is possible to prove the observ-
ability of θ i and θ i+1 independently of x and the proof is split into two parts.
Consider (8) de�ned on h2(x) = y2 ∈ I i , which since y2 is measured can be written

as

θ̇ i = 0
θ̇ i+1 = 0

(15a)

ẋ = f c(x , u, qfcn(y2 , θ i , θ i+1))
y1 = h1(x).

(15b)

Linearizing (15b) at the stationary point z̄0 gives

ẋ = f c(z̄0) + ( ∂ f c

∂x
∂ f c

∂u
∂ f c

∂qfcn
)∣

z̄0
(z̄ − z̄0)

= f c(z̄0) + A(x − x0) + Bu(u − u0) + Bq(qfcn − qfcn, 0)

y1 = h1(x0) +
∂h1
∂x

∣
z̄0
(x − x0) = h1(x0) + C(x − x0).

(16)

Without loss of generality it can be assumed that h1(x0) = 0. �e input-output form
of (16) is then

a(p)y = bu(p)u + bq(p)qfcn , (17)
where it can be noted that x does not appear which allows observability analysis of θ i

and θ i+1 independently of x.
Combining (17) and (15) for each polynomial b lq(p) in bq(p) = (b1q(p)⋯)T gives

θ̇ i = 0
θ̇ i+1 = 0

ζ l = a(p)y − bu(p)u
b lq(p)

= qfcn = θ i + (θ i+1 − θ i)y2 = (1 − y2 y2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=C(t)

( θ i

θ i+1)
(18)

http://dx.doi.org/10.1016/j.conengprac.2009.11.008
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on which observability of θ i and θ i+1 can be established by a full rank condition on the
observability gramian,

Γ(0, t) = ∫ t

0
ΦT(τ, 0)CT(τ)C(τ)Φ(τ, 0)dτ,

under the condition that the in�uence of qfcn is not cancelled by the zeros of bq(p).�e
transition matrix is here Φ(t, t0) = I since θ̇ i = θ̇ i+1 = 0. Without loss of generality it
is assumed that (A, Bq ,C) in (16) is a minimal realization.�e zeros of bq(s) are then
those s for which

(sI − A Bq
C 0 ) (19)

loses rank (Kailath, 1980).�e assumptions bq(p)y2 ≠ 0 and the matrix

(−A Bq
C 0 )

having full column rank assures that the in�uence of qfcn is not cancelled.
Now it is possible to proceed analyzing the observability gramian for (18), which

becomes

Γ(0, t) = ∫ t

0
I (1 − y2 y2)

T (1 − y2 y2) Idτ = ∫ t

0
( 1 − y2(τ) y2(τ)
y2(τ) − y22(τ) y22(τ)) dτ,

and has full rank if and only if det Γ(0, t) ≠ 0.�at is

t ∫ t

0
y22(τ)dτ ≠ ( ∫ t

0
y2(τ)dτ)

2
, (20)

which by algebraic computations give

ẏ2(t) ≠ 0

for any t such that the trajectory remains in I i .
States θ i and θ i+1 can now be uniquely determined from the trajectory if ẏ2 ≠ 0, and

qfcn in (16) can be computed and treated as an extra input allowing observability of x to
be established using the usual observability rank condition. Finally, using the result in
Lee and Markus (1968,�eorem 6.4) that a su�cient condition for local observability
of a non-linear system is observability of a linearization in a stationary point, local
observability of the system (15) is established. ◻

�eorem 3.3 Model (9) with qfcn de�ned by (7) is locally observable in z̄0 on a smooth
trajectory (y, u) in I i , containing the stationary point z̄0, if d

dt h2(x) ≠ 0, and the pair
(C1 ,A) is observable.
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Proof Equations (9c) and (9d) together with the assumption that (C1 ,A) is an observ-
able pair gives that state x is locally observable. Now, observability of θ i and θ i+1 can be
determined by rewriting (9a), (9b), and (9e) as

ζ = y2
h2(x)

− 1 = (1 − h2(x) h2(x))(
θ i

θ i+1) . (21)

Using that h2(x) is known from the observability of x, (21) is in the form (18) and
(θ i , θ i+1) can be uniquely determined if d

dt h2(x) ≠ 0, and Lee and Markus (1968) gives
observability of (9). ◻
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Abstract

Maps or look-up tables are frequently used in engine control systems, and can be
of dimension one or higher.�eir use is o�en to describe stationary phenomena
such as sensor characteristics or engine performance parameters like volumetric
e�ciency. Aging can slowly change the behavior, which can be manifested as a
bias, and it can be necessary to adapt the maps. Methods for bias compensation
and on-line map adaptation using extended Kalman �lters are investigated and
discussed. Key properties of the approach are ways of handling component
aging, varyingmeasurement quality, as well as operating point dependentmodel
quality. Handling covariance growth on locally unobservable modes, which is
an inherent property of the map adaptation problem, is also important and this
is solved for the Kalman �lter.�e method is applicable to o�-line calibration of
maps where the only requirement of the data is that the entire operating region
of the system is covered, i.e. no special calibration cycles are required. Two
truck engine applications are evaluated, one where a 1-D air mass-�ow sensor
adaptation map is estimated, and one where a 2-D volumetric e�ciency map is
adapted, both during a European transient cycle. An evaluation on experimental
data shows that the method estimates a map, describing the sensor error, on a
measurement sequence not specially designed for adaptation.
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1 Introduction
�ere are high demands on the control and diagnosis functionality in engine control units
and to achieve the desired performance they need accurate information about the system
state. State information is acquired using measurements with sensors as well as through
estimation algorithms that utilize models of the system.�e latter is important since
measurements are not always possible because sensors are either; unavailable, impossible
to install, or too expensive for the intended application.
In control and diagnosis systems, models play an important role.�ese models can

be represented in many ways either as equations or, as is very common, by utilizing maps
(or look-up tables) that represent a function (Guzzella and Amstutz, 1998; Peyton Jones
and Muske, 2009). Examples of maps can be found in sensor calibration data (1-D) or
the volumetric e�ciency of the engine (o�en 2-D). In particular, maps are frequently
used to describe relations where physical models are unavailable or too complex for on-
line implementation, e.g. sensor and actuator characteristics, cooler e�ciency, injector
characteristics, and a�ertreatment systems.
A common situation is that the dynamics is well captured by the model but there

are stationary errors (bias), which will be referred to as a biased model.�is has been
observed in for example truck engines (Höckerdal et al., 2008). Another important
issue is that the system ages and there is need for adjusting the models accordingly to
capture and account for such e�ects.�ere is thus a need for calibrating maps o�-line at
development time, and adapt the maps on-line while the system is running to capture
aging.
For the o�-line case it is worth noting that it is straight forward to include the map

parameters in the total parameter vector θ and apply standard identi�cation methods.
Routines for on-line map adaptation have been considered in Peyton Jones and Muske
(2009);Wu (2006); Höckerdal et al. (2011) and the approach discussed below builds upon
the latter. In particular it includes a systematic way for handling aging and other slowly
varying uncertainties. Simultaneous bias compensation and on-line map adaption is a
key property which is of industrial value since the method integrates well with existing
map-based solutions.

2 Method Outline
�e sections to come presents a systematic approach for designing an observer that adapt
maps on-line at the same time as it reduces stationary errors in a model.�e starting
point is a default model, in discrete time state space form,

xt+1 = fdef(xt , ut)
yt = h(xt),

(1)

with states x ∈ Rnx , inputs u ∈ Rnu , and outputs y ∈ Rn y , that su�ers from station-
ary errors, see Figure 1 for an example. �ese model errors can exhibit both fast and
slow dynamics, arising from for example operating point dependent bias and aging
respectively.
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Figure 1: Typical example of model output from a biased model (Höckerdal et al., 2008),
whereWref is the air mass-�ow measured by a reference sensor. As o�en is the case the
model captures the dynamics well but su�ers from operating point dependent stationary
errors.

�e objective is to handle these model errors in a systematic way by: using an on-line
recursive algorithm, identifying model errors, and adapting the model. A direct way to
achieve this is by introducing a parameterized function,

qfcn(xt , ut , θ t), (2)

in (1) and augmenting the state vector with the parameter vector θ

θ t+1 = θ t (3a)
xt+1 = f (xt , ut , qfcn(xt , ut , θ t)) (3b)
yt = h(xt). (3c)

�e idea with a construction like this is to let the parametrization (2) capture the
operating point dependence, and use the parameters, θ, introduced as new states, to
track the aging. With (3) as basis an observer that estimates the augmented state vector,
(x , θ), can be designed. Note that it is possible to incorporate prior information into the
map identi�cation process, such as limitations, smoothness, trends, etc., by altering the
right hand side of (3a).

�e following example of a parameterized function qfcn, from an automotive appli-
cation (Höckerdal et al., 2008), has served as motivation for the work and will later be
used in the evaluation.

Example 1 In a heavy duty diesel engine with exhaust gas recirculation (EGR) and
variable geometry turbocharger (VGT), the air mass-�ow through the compressor is vital
information for safe and clean engine control.�erefore the engine is typically equipped
with a mass-�ow sensor. However the sensor signal is subjected to an operating point
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Figure 2: Air mass-�ow sensor error map with the grid points denoted with the pair
(W i , θ i) corresponding to a correction factor θ i at a mass-�ow ofW i .

dependent error, due to sensor installation and local �ow �elds, and this measurement
error has to be compensated for when it is used in the engine control unit (ECU).�e
relation between the true air mass-�owW and measured air mass-�owWmeas can be
stated as

Wmeas = (1 + qfcn(W , θ))W
where the function qfcn is presented graphically in Figure 2.W i are grid points, and θ i

are the corresponding correction parameters. In this case the sensor model is represented
by a 1-D linear interpolation map, whereW lies between grid pointsW i ≤ W ≤ W i+1

and the interpolation is de�ned by

qfcn(W , θ) = θ i + (θ i+1 − θ i)
W i+1 −W i ⋅ (W −W i). (4)

Due to aging it is necessary to adapt this map, see Höckerdal et al. (2008) for a longer
discussion. ◇

Note that with the construction (3), using parameters to track aging, the observer stores
information about the operating point dependent errors, i.e. the parameters act θ as a
memory.

�e development of a model like (3) for identi�cation and its usage for estimation
entails that some new issues have to be addressed.�e main concern is how to update
the parameters, θ, in a controlled manner, which is the topic of Section 3, with respect to
observability and observer tuning. Here the parameterization of qfcn is given and the
interested reader is referred to for example Lind and Ljung (2008) for a discussion on
how to �nd a structure and suitable regressors.

�e system (3) is in standard state space form which means that any suitable observer
design can be applied.�e choice here is to use a stochastic �lter which entails introduc-
tion of noise in (3) to describe model and measurement uncertainties. An approach for



3. Observability 99

estimating states while at the same time handling unknown parameters is to apply a joint
parameter and state estimating extended Kalman �lter (EKF) (Kopp and Orford, 1963).
An advantage of stochastic �lters compared to deterministic observers is that, not only
the state estimate, but also an estimate of the estimation error statistics is computed.�e
estimation error statistics is used in the computation of the �lter feedback gain, which
gives the stochastic �lters natural tuning parameters that allow �lter tailoring to handle
system aging, unknown state initialization, time dependent model and measurement
quality, outlier rejection etc., see Section 3.2 for the discussion. For these reasons the
joint parameter and state estimating EKF is used.

3 Observability
In estimation, observability or detectability of the system at hand is central in order
to ensure correct and consistent estimates.�is section is devoted to the observability
of (3), where q represents linear interpolation.�e observability discussion is conducted
on the continuous time system,

θ̇ = 0
ẋ = f (x , u, q(x , θ))
y = h(x),

(5)

corresponding to (3).�e results are valid also for the discrete time system as long as the
sample time is chosen small enough (Kalman et al., 1963).
Intuitively, a system containing linear, or higher order, interpolation with the in-

terpolation grid points as parameter states is not locally observable.�is can be seen
by considering the air mass-�ow adaptation map in Example 1. Considering the total
system, assuming more than one interpolation interval, this can be understood by the
intrinsic nature of the linear interpolation (4). Since not all parameters are involved
in the interpolation computation in each operating point, some parameters are always
locally unobservable. However, even if only one interpolation interval is studied and
the non-interacting parameters are disregarded, e.g. consider only the shaded region of
Figure 2, the ordinary rank condition, stating su�cient conditions for observability, is in-
su�cient for assessing local observability of the reduced system. To illustrate consider (5)
in a single interval,

θ̇ i = 0
θ̇ i+1 = 0

ẋ = f (x , u, q(x j , θ i , θ i+1))
y = h(x), yk = x j .

(6)

For Example 1 this is realized by studying a stationary operating point where the interpo-
lation variable, x j , is in I i =]x i

j , x i+1
j [, corresponding to the shaded region enclosed by

W8 andW9 in Figure 2. Here the corresponding parameters θ8 and θ9 are unobservable
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according to the ordinary rank condition, i.e., the Jacobian of

⎛
⎜
⎝

h(x)
L f h(x)

⋮

⎞
⎟
⎠
,

where L f denotes the Lie derivative along the vector �eld f , with respect to x , θ i , θ i+1

will be rank de�cient in all operating points. Hence direct use of the rank condition for
assessing, both local and global, observability for this system is not possible. To ensure
global observability of (5), a trajectory has to be considered and analytical results for
establishing observability are derived in Höckerdal et al. (2011).

3.1 UnobservableModes and Covariance Growth
According to the previous paragraph, at any given time there are generally some pa-
rameters θ i that are locally unobservable in (3). A property of EKF observers based on
systems with locally unobservable states is that the estimation error covariance matrix
grows linearly for the unobservable states if system noise for these modes is present, see
Höckerdal et al. (2011).�is e�ect is illustrated in Figure 3, where the variance of three
parameter states, θ5, θ8, and θ 10 from Figure 2 are plotted versus time. Parameter θ5
corresponds to a parameter that is not observable at all for the studied trajectory, while
the parameter θ8 is observable during the �rst half of the trajectory and unobservable
for the second half. For the parameter θ 10 the case is reversed. �e e�ects of this co-
variance growth is two-sided: 1) it o�ers a way to achieve fast update of old parameters
while protecting o�en updated parameters from spurious measurements, 2) it may cause
numerical problems a�ecting the �lter stability when considering the life-time of the
system, which has to be handled.
In engine map adaptation, experience indicates that adaptation algorithms, not

using the EKF and joint parameter and state estimation, have problems concerning
system aging and occasional spurious measurements. For example an engine, whose
trajectories do not span the entire parameter space during normal operation and only
occasionally enters some areas, may su�er from undesired system behavior caused by old
parameters corresponding to seldom visited operating points. In these cases, a linearly
growing uncertainty for seldom updated parameters enables a fast parameter update
rate of old parameters without risking large errors in the state estimates. �is can in
some sense be thought of as a dynamic forgetting factor similar to recursive least square
(RLS) techniques (Ljung, 1999) and is a highly desirable property in engine adaptation
algorithms not only to handle aging parameters but also to protect updated parameters.
A�er discussing the positive e�ects induced by the locally unobservable parameter

states it remains how to ensure stable observer operation even though some parameter
states never may become observable, causing the corresponding covariance matrix
elements to grow without bound. A direct and intuitive way of handling this linear
growth of estimation error covariance of the locally unobservable parameter states is
to introduce an upper limit for the corresponding estimation error covariance matrix
elements. A possible such upper limit is the initial error covariance matrix, P0, and with
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(b) Air mass-�ow trajectory.

Figure 3:�e �gure shows the development of the estimation error variance for three
parameter states. One that is unobservable during the entire trajectory – θ5, one that
is observable for the �rst half of the trajectory – θ8, and one that is observable for the
second half of the trajectory – θ 10.

this choice the introduction of yet another tuning parameter is avoided (Höckerdal et al.,
2011).

3.2 Method for Bias Compensation

In the sense of map adaptation as a way of reducing bias, it is reasonable to compare
the proposed map adaption method to other common ways of reducing operating point
dependent estimation errors. One such method is presented in Höckerdal et al. (2009),
where the state vector is augmented with a bias state that is used directly to describe the
model error,

xt+1 = f (xt , ut , qt)
qt+1 = qt
yt = h(xt).

(7)

A main di�erence is that an observer based on (3) facilitates separate tracking of fast
changes in operating point and slower changes due to aging. For an observer based
on (7) this is not possible and it is necessary for the bias state to change approximately
as fast as the system dynamics, otherwise it will not be able to track a change in system
operating point. However, a rapidly changing bias state will also capture high frequency
disturbances, and will thereby not be able to withstand spurious measurements to the
same extent as the slower parameter states θ in (3).
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4 Method Evaluation
To evaluate the method two studies are performed, a simulation study and a study
utilizing experimental data. �e two evaluations address the problem of estimating
and adapting the air mass-�ow into an engine from two di�erent perspectives that
are mutually exclusive. �at is either the mass-�ow measurement, or the volumetric
e�ciency is considered to be most accurate. A third alternative is to install an accurate
reference sensor, which is only possible in a test cell or development vehicle and not an
option for a consumer product.

�e simulation study demonstrates the capability to adapt a 2-D map for the volu-
metric e�ciency while the experimental evaluation addresses the air mass-�ow sensor
adaptation problem presented in Example 1.�e aim of the simulations are to show the
convergence of the approach and the e�ect of a trajectory that only partly spans the map
grid. As a part of the convergence analysis an investigation of the e�ect of incorrect noise
models when using the EKF as a parameter estimator (Ljung, 1979) is included.

�e experimental part shows the result of the method applied to experimental data
with the aim to analyze robustness and performance in presence of model errors. Since
the approach supplies a solution to the problem of biased default models solved in
Höckerdal et al. (2009), the performance of that approach is presented as a comparison.
In both studies the non-linear model of a heavy duty diesel engine, developed in

Wahlström and Eriksson (Accepted for publication), is used together with measurements
from an engine in an engine test cell. An overview of the model schematics is presented
in Figure 4. �e model has three states, intake and exhaust manifold pressures, and
turbine speed which all are present in the model output together with the air mass-�ow
through the compressor.�e data is collected during a European Transient Cycle (ETC).
In the simulation study, feedback from the intake manifold pressure and turbine

speed sensors are used whilst in the experimental evaluation, feedback from all sensors
except the exhaust manifold pressure sensor are used. �e performance is evaluated
with respect to all states and outputs, i.e. intake and exhaust manifold pressures, turbine
speed, and air mass-�ow through the compressor.

4.1 Study 1: Simulation
�e simulation study serves three purposes; illustrating convergence of the approach,
show that the method applies also to higher map dimensions, and highlighting the e�ect
of trajectories that does not span the entire map grid.

Observer for the simulation evaluation

In the simulation evaluation the observer is constructed using the model developed
in Wahlström and Eriksson (Accepted for publication) and replacing the volumetric
e�ciency sub model with a six-by-six parameterized cubical spline interpolation map,
q(neng , pim , θ), presented in Figure 5, which gives a model in the form (3). An alternative
to using a spline for the interpolation would be to use bilinear interpolation. Here the
spline is chosen to favor the smoothness of the volumetric e�ciency.
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Figure 4: Schematic overview of the diesel engine model with EGR and VGT (Wahlström
and Eriksson, Accepted for publication), showing model states (pim, pem, and ntrb),
inputs (uδ , uegr, uvgt, and ne), and mass-�ows between the di�erent components (W ,
Wei,Weo,Wegr, andWt). Rectangles with rounded corners denote control volumes.

Simulation evaluation

Figure 5 shows the true and adapted volumetric e�ciency maps together with the ETC
trajectory.�e transparent upper surface corresponds to the true volumetric e�ciency
to be estimated and the lower, with a rough grid of 6× 6, the estimated map at the end of
the ETC, which was initialized 10 percent units below the true map. At the bottom of
Figure 5 level curves of the absolute estimation error are plotted together with the ETC
trajectory to better illustrate the correlation between well adapted map areas and how
the grid is spanned by the trajectory. As expected, map areas where the trajectory spends
much time are well adapted while grid points in areas not spanned by the trajectory is
unadapted and remains at their initial values.

Noise model sensitivity

A theoretical analysis of the EKF as a parameter estimator is presented in Ljung (1979),
which concludes that the parameter estimates will be biased if an incorrect noise descrip-
tion is used.
Inspired by this theoretical analysis and the fact that true nature of the noise seldom is

completely known a simulation study is performed with the aim to analyze the in�uence
of incorrect noise assumptions.�e analysis is executed by applying the above designed
observer to several sets of simulated data where the system and measurement noise
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di�erence between the two. �e level curves are also imposed by the ETC trajectory,
used as adaptation cycle, represented by the gray dots.

variance and color had been adjusted. Neither of these simulations show of any problem
of consistent convergence of the sensor error parameters.

Even though the analysis in the studied case does not indicate this to be an issue
the potential problem can not be discarded in general. Even if the main purpose of the
parameters is, as in the engine applications addressed here, their function as a memory
there exist applications where this is an issue. In such cases it is straightforward to use
the in Ljung (1979) modi�ed EKF algorithm for improved convergence properties.

4.2 Study 2: Experimental data

To assess the performance and robustness of the method an evaluation using measure-
ments from an engine in an engine test cell is conducted. Since in this case there are
other signi�cant model errors present, besides the air mass-�ow sensor error, an extra
bias state is introduced to improve the state estimates.�e additional bias state is intro-
duced according to (8) to compensate for a known model de�ciency in the compressor
mass-�ow. �e adaptation map, q(W , θ), is in this case de�ned by Example 1. Note
that, in this case the adaptation map is situated in the measurement equation which is
formally treated in Höckerdal et al. (2011).
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Observers for the experimental evaluation

�e observer designs for the experimental evaluation are, starting with those without
an extra bias state: An EKF based on the default model developed in Wahlström and
Eriksson (Accepted for publication) directly,

xt+1 = f (xt , ut)

yt = (xpim ,t xntrb ,t hW(xt))
T ,

referred to as Def. An EKF with an extra bias state introduced in the measurement
equation to describe the air mass-�ow measurement error from the method developed
in Höckerdal et al. (2009),

xt+1 = f (xt , ut)
qt+1 = qt

yt = (xpim ,t xntrb ,t hW(xt) + qt)
T ,

referred to as Aug. A joint state and parameter estimating EKF based on the default
model and a parameterized bias,

xt+1 = f (xt , ut)
θ t+1 = θ t

yt = (xpim ,t xntrb ,t (1 + qfcn(hW(xt), θ t))hW(xt))
T ,

referred to as Map. where the parameterization of qfcn is presented in Figure 2. �e
primary di�erence between the three observers are presented schematically in Figure 6,
where the feedback part of each observer is highlighted.

�e additional bias state, complementing those for handling the measurement error,
is introduced according to the ideas in Höckerdal et al. (2009).�e purpose is to reduce
the estimation errors due to a known error in the compressor model causing incorrect
prediction of the compressor mass-�ow, i.e. for Def.

xt+1 = f (xt , ∆W ,t , ut)
∆W ,t+1 = ∆W ,t

yt = (xpim ,t xntrb ,t hW(xt , ∆W ,t))
T .

(8)

Experimental evaluation

With the introduction of an extra state, compensating for the compressor mass-�ow,
the estimate of the intake manifold pressure becomes signi�cantly better at the expense
of the exhaust manifold pressure estimate, while the estimates of turbine speed, and
air mass-�ow is almost una�ected, see Figure 7 and Table 1. While Table 1 shows the
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Figure 6: Schematics that highlight the feedback part of the three observers, Def., Aug.,
and Map, studied in the experimental evaluation.�e main di�erence between the three
con�gurations are shown in the block on the Ŵ feedback signal, below the h(x̂) block.
To the le� the inputs and feedback signals are shown, and to the right the four evaluation
outputs are shown. Note that the dimension of the output signal of the Kalman gain
block have di�erent dimensions for the di�erent observers.
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Table 1: Mean estimation error using experimental data for Def., Aug. and Map.

Meas.
With ∆Wcmp,t Without ∆Wcmp,t

Def. Aug. Map. Def. Aug. Map.

pim[Pa] 4208 169 -210 13875 13176 13019
pem[Pa] -10987 -13746 -14420 -2339 -3454 -3450
ntrb[rpm] 69 16 29 -57 -19 5
Wair[kg/s] 0.008 -0.020 -0.020 0.031 0.035 0.035
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Figure 7: Probability density functions of the estimation errors showing bias and estima-
tion error statistics.
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mean estimation error, Figure 7 shows the estimation error probability density functions
(PDF).

In Section 3.2 the tuning of Aug. and Map. were discussed, especially the di�erent
philosophies of the bias describing states, i.e. the relatively fast bias state in Aug. and
the slow map states in Map. In Figures 7 and 8, and Table 1 the similarity in estimation
performance between Aug. and Map. is striking, which is an expected result.�e mean
estimation errors for pim and ntrb are reduced while the mean estimation errors for
pem andWcmp are slightly increased.�at is, in absence of outliers Aug. and Map. are
comparable with respect to output estimation performance.�e bene�t with Map. is that
it produces an adaptation map, and enables the possibility to track aging and protection
against corrupted measurements.

From Figure 8 it is seen that, even though there are unknown model errors present,
besides the compressor mass-�ow, the method manages to estimate a map that describes
the di�erence between modeled and measured air mass-�ow through the compressor
well. Notice that there are large number of samples at air mass-�ows slightly below
0.2 kg/s and that only few of these are from stationary operation.

Finally, all this shows that an adaptation map can be estimated even though the data
used is from the highly transient ETC, not specially designed for air mass-�ow sensor
adaptation.
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5 Conclusions
Inmodern control and diagnosis systems, model based estimation has achieved increased
attention and especially interesting are techniques to handle the inevitable model errors.
A method for on-line map identi�cation, based on standard observer methodology, that
handles the speci�c issues of aging parameters and occasional corruptedmeasurements is
discussed. A common technique in engine applications is adaptation maps that describe
the model errors. A method for storing bias information from di�erent operating points,
based on the EKF as parameter estimator, is investigated.�is method achieves simulta-
neous estimation of original model states and parameters, and applies to adaptation of
engine maps.
An inherent property of the adaptation of maps is that the system is locally un-

observable. Stochastic observers together with a parameterized bias that has locally
unobservable states is an asset that handles seldom updated parameters and gives robust-
ness against occasional spurious measurements in ordinary map adaptation algorithms.
�e linear growth of estimation error covariance, that comes as a result of local unob-
servability of the parameters, also forms a potential numerical problem for the observer
and a way to limit this growth without introducing extra tuning parameters is provided.

�e method is evaluated in a simulation study, where it is demonstrated that it esti-
mates both the engine states and a parameterized 2-D adaptation map for the volumetric
e�ciency. An experimental evaluation shows that the method achieves the same estima-
tion quality with respect to mean and maximum absolute error, as the method developed
in Höckerdal et al. (2009), but adds value in that an engine adaptation map can be
simultaneously estimated. Furthermore, the successful demonstration on experimental
data, that inevitably introduces unknown model errors and noise, shows the robustness
of the method.�e method achieves simultaneous state estimation and map adaption,
without using test cycles especially designed for adaptation, and it is therefore suitable
for both on- and o�-line calibration of maps.
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Abstract

When estimating states in engine control systems there are limitations on the
computational capabilities.�is becomes especially apparent when designing
observers for sti� systems since the implementation requires small step lengths.
One way to reduce the computational burden, is to reduce the model sti�ness
by approximating the fast dynamics with instantaneous relations, transforming
an ODE model into a DAE model.
Performance and sample frequency limitations for extended Kalman �lters
based on both the original ODE model and the reduced DAE model for a diesel
engine is analyzed and compared.�e e�ect of using backward Euler instead of
forward Euler when discretizing the continuous time model is analyzed.
�e ideas are evaluated using measurement data from a diesel engine. �e
engine is equipped with throttle, EGR, and VGT and the sti� model dynamics
arise as a consequence of the throttle between two control volumes in the air
intake system. It is shown that even though the ODE, for each time-update, is
less computationally demanding than the resulting DAE, an EKF based on the
DAEmodel achieves better estimation performance than one based on the ODE
with less computational e�ort.�e main gain with the DAE based EKF is that it
allows increased step lengths without degrading the estimation performance
compared to the ODE based EKF.
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1 Introduction

Model based estimation for systems with both fast and slow dynamics is a wide and active
research area, with di�erent application areas such as combustion engines (Lino et al.,
2008; García-Nieto et al., 2008), and electrochemical and reactive distillation processes
(Mandela et al., 2010).

In the automotive industry there is a constant pursuit of designing cost e�ective
systems that are able to meet stricter emission legislations and consumer demands on
cheap and reliable operation. In particular this is true for the competitive market of
heavy duty diesel engines where concepts like intake throttle, exhaust gas recirculation
(EGR) and variable geometry turbines (VGT) are introduced to cope with the increased
demands on lower emissions (Friedrich et al., 2009). Tomake accurate and robust control
(Alt et al., 2009; Reichhartinger and Horn, 2009) and diagnosis (Morgan and Liu, 2009)
of these systems feasible, reliable measurements or estimates of the internal states are
required.

Due to installation limitations and sensor cost, the use of model based estimation
has increased (Lino et al., 2008; García-Nieto et al., 2008; Reichhartinger and Horn,
2009). O�en there exist models that have been developed for some purpose, e.g. system
analysis, control, or diagnosis, which are ordinary di�erential equations (ODE) based
on �rst principle physics (Müller et al., 1998; Eriksson, 2007). Much time are invested in
these models, with large e�orts on model parametrization, calibration and validation. It
is therefore desirable to use the developed models in as many applications as possible.
However, models like these can have properties, e.g., bias (Höckerdal et al., 2008) and/or
fast dynamics (Wahlström and Eriksson, 2010; Friedrich et al., 2009), that limit their
applicability in other areas, in this case estimation. Methods that can be used to attenuate
suchmodel de�ciencies are desired. Biasedmodels and their use in estimation are treated
in for example Höckerdal et al. (2009, 2010) while the use of models that experience fast
and slow dynamics, i.e. sti� models, is the topic of this work.

�e problem of sti� models in engine control is closely connected to the embedded
system in which the estimator is implemented and the computational limitations of the
embedded system. In an engine control unit (ECU), a main di�culty with sti� models
is that the model execution is scheduled in loops with �xed frequencies, which limits
the possibility to satisfactorily solve the di�erential equations. A possible solution is
to replace the fast dynamics in the ODE, with instantaneous dynamics, i.e. algebraic
conditions, resulting in a di�erential algebraic equation (DAE), keeping the overall model
structure (Brenan et al., 1989).

�e objective is to analyze the potential in using, the popular and widely applied,
Kalman �lter (Kalman, 1960) and especially the extended Kalman �lter (EKF) (Jazwinski,
1970) based on a DAE compared to using an EKF based on a sti� ODE. Focus is on the
di�erent approaches step length and stability requirements for di�erent discretization
methods, and thereby their computational demands, when running the corresponding
ODE and DAE based EKF:s.
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Figure 1: Schematic of the diesel engine model (Wahlström and Eriksson, 2010) with
throttle, EGR and VGT, showing model states (pim, pem, pic, ωt, and Tem), inputs (uegr,
uvgt, uδ , uth, and ne), and �ows between the di�erent components (Wc,Wth,We gr ,Wei,
Weo, andWt). Rectangles with rounded corners represent control volumes.

2 Background and ProblemMotivation

Numerically e�cient and stable observer solutions for embedded systems are desirable
and an o�en limiting fact is the base frequencies in which the control system is scheduled,
such as 20 or 100Hz.�is can cause problems when implementing EKF:s for models
with fast dynamics, e.g. sti� models, due to their need for a small step length. One
possible way around this is to simplify the model dynamics that cause the sti� behavior,
by replacing it with algebraic constraints, and in this way introduce a DAE formulation.

2.1 Stiffness in EngineModels

In the automotive industry, and especially in the �eld of engine control, a typical example
where sti� models is a problem is when a throttle is used (Wahlström and Eriksson,
2010). A throttle in the air intake system, between the compressor and engine cylinders,
connects the intake manifold and intercooler volumes with a variable restriction, see
Figure 1. A common model for �lling and emptying dynamics of volumes, is to consider
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mass conservation of ideal gases in �xed control volumes (Heywood, 1988)

ṗCV =
dpCV
dt

= RCVTCV
VCV

(WCV, in(⋅) −WCV, out(⋅)) ,

where pCV and TCV denotes the control volume pressure and temperature, RCV the ideal
gas constant for the gas in the control volume, VCV the volume, andWCV, in/WCV, out
are the mass-�ows in/out of the control volume. �e �ows depend on pressures and
temperatures in the surrounding systems see Eriksson (2007), but these dependencies
are omitted for the sake of clarity. An ODE for the intake system pressures presented in
Figure 1 is

ṗim = RaTim
Vim

(Wth(⋅) +Wegr(⋅) −Wei(⋅)) (1a)

ṗic =
RaTc
Vic

(Wc(⋅) −Wth(⋅)) , (1b)

for the intake manifold and intercooler respectively. In operating points with fully open,
or nearly open throttle, the �lling and emptying dynamics become fast, resulting in
oscillating estimates if the discretization method and/or step length is inadequate, i.e.
too long, see the oscillating estimates in Figure 3b. For heavy duty diesel engines, these
sti� operating conditions are common and need to be addressed.

�e fast dynamics around the throttle and pic results in that the �owsWc(⋅) and
Wth(⋅) follow each other closely. �erefore, one way to handle this is to remove the
intercooler control volume and consider the �ows in and out of that volume as an
algebraic constraint. By doing this, the original ODE (1) is transformed into the following
DAE,

ṗim = RaTim
VDAEim

(Wth(pic , pim , uth) +Wegr(⋅) −Wei(⋅)) (2a)

0 =Wc(pic ,ωt) −Wth(pic , pim , uth), (2b)

with pic now becoming an algebraic variable. When a control volume is removed, the
dynamics of the total system is a�ected, especially operating conditions with wide open
throttle, where the dynamics becomes faster than that of the original model. Since most
operation of diesel engines is with wide open throttle it is desirable to have a model, and
an EKF, for these operating conditions. Figure 2 shows a simulation of the default ODE
model, de�ned by

Ṫem = fTem(pim , pem , ωt , Tem , uδ , uegr , uvgt , ne) (3a)
ω̇t = fωt ( pem , pic , ωt , Tem , uvgt ) (3b)

ṗem = fpem(pim , pem , ωt , Tem , uδ , uegr , uvgt , ne) (3c)
ṗim = fpim(pim , pem , pic , Tem , uδ , uegr , uth , ne) (3d)
ṗic = fpic (pim , pic , ωt , uth ) (3e)
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and

yfeedb = (pim pem ωt Wc(pic ,ωt))
T (4a)

yeval = pic, (4b)

together with simulations of the DAE model, with modi�cations of (3d) and (3e) accord-
ing to (2).�e measurement equation (4) is split in two, where (4a) is used for feedback
in the EKF and (4b) is used as an evaluation output in Section 4 only. Two di�erent
control volume sizes, VDAEim = Vim and VDAEim = Vim + Vic, are evaluated. Especially it
shows that the smaller volume gives undesired overshoots in the simulations of the
pressures, turbine speed, and mass-�ow for open throttle operation, see solid ellipses
in Figure 2a, while the closed throttle operation is not that bad, see dotted ellipses in
Figure 2b.�erefore the volume remaining in the DAE is increased to the sum of the
original ODE’s control volumes, i.e. VDAEim = Vim + Vic in (2a).

3 DAE Observer
Before presenting the EKF algorithm used for the DAE observer in Section 3.2, a review
of previous results and algorithms is conducted and presented in Section 3.1, while
observability of the DAE model is the subject of Section 3.3.

3.1 Observer Design – EKF for DAE:s
For continuous time ODE:s, such as

ẋ = f (x , u) +w (5a)
y = h(x) + v, (5b)

where w and v are zero mean white noise processes with covariance matrices Q and R,
EKF implementations are well known (Kailath et al., 2000). For general DAE:s

ẋ = f (x , z, u) +w (6a)
0 = g(x , z, u) (6b)
y = h(x , z, u) + v, (6c)

where x and z denotes di�erential and algebraic variables/states, respectively this is not
the case. EKF:s for DAE:s are treated in for example Becerra et al. (2001); Mandela et al.
(2010), that both consider semi-explicit DAE:s of index 1, i.e. ∂g∂z has full column rank.
�e di�erence between the EKF in Becerra et al. (2001) and Mandela et al. (2010) is that
the latter includes the algebraic subsystem (6b) in the standard EKF algorithm (Beccuti
et al., 2009; Won et al., 2010). �is is done by di�erentiating the linearized algebraic
subsystem

ẋ = Atx + Btz +w
0 = Ctx + Dtz

⇒
ẋ = Atx + Btz +w

ż = −D−1
t Ct ẋ,

(7)
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Figure 2: DAE simulations with and without control volume adjustment for a step length
of 50ms using backward Euler, compared to high end simulation of the default ODEusing
the Matlab variable step length solver, ode23t, with absolute and relative tolerances of
10−6.�e better dynamic behavior of the model with increased volume is seen in the
areas highlighted with solid ellipses, representing open throttle operation. Also, there
is only minor loss in simulation accuracy for the larger volume during closed throttle
operation, indicated by dotted ellipses.
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where

(At Bt
Ct Dt

) = (
∂ f
∂x

∂ f
∂z

∂g
∂x

∂g
∂z

) ,

and the input, u, has been disregarded, which includes the estimation quality of the
algebraic states in theKalman gain computation. Note that inputswith discontinuous �rst-
order derivatives are not allowed in the algebraic submodel (6b), due to the di�erentiation
in (7). Normally this is not a problem since a low-pass �lter on the inputs can be
introduced to circumvent this.
Another issue with EKF:s for DAE:s is that, for the problem to be well posed, system

noise must be introduced with care (Gerdin et al., 2007). In (6), as well as in Mandela
et al. (2010), system noise is introduced only in the di�erential part of the DAE, which
may be more restrictive than necessary but guarantees that the problem is well posed
(Gerdin et al., 2007).

3.2 EKF Algorithm
�e algorithm used has a lot in common with the one presented in Mandela et al. (2010).
Among the di�erences are that the state prediction is performed with the explicit forward
Euler, or implicit backward Euler, i.e. no dedicated DAE solver is used, and that the
covariance matrix is predicted using the corresponding discrete-time linearization (8)
instead of using the transition matrix ϕ = e Ā t∣tTs . Note that the solution using forward
Euler is supplemented with an equation solver to ensure consistency of the algebraic
states a�er prediction.

�e algorithm used is summarized in Algorithm 1. For the diesel engine f is
composed by (3a–3d), g by (3e), and h by (4a), where modi�cations of (3d) and (3e) are
made according to (2). In Algorithm 1, Ḡt∣t is a result of the di�erentiation in (7) and
implies that system noise is present in the di�erential variables of the DAE only.

3.3 Observability of EngineModel
To ensure that the observer estimates converge to the true states, observability of the
underlying model along the studied trajectory is central. In contrast to standard state
space descriptions, for DAE:s there exist several concepts of observability (Yip and
Sincovec, 1981; Dai, 1989; Mehrmann and Stykel, 2005; Losse and Mehrmann, 2008).�e
concepts are C-,R- and I-observability, denoting complete observability, observability
within the reachable set and impulse observability, respectively.
Generally, descriptor systems, or DAE:s, are not C-observable since they contain

algebraic constraints that force the solution, and output, onto a speci�cmanifold. For this
reason the observability within the reachable set –R-observability is introduced, which
is the concept used here.�is concept needs an appropriate projection of the dynamical
part of the system, sometimes referred to as the slow sub-system, onto a manifold de�ned
by the algebraic equations, or fast sub-system. For linear time-invariant systems

Ē ˙̄x = Āx̄
y = H̄x̄,

(9)
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Algorithm 1 Extended Kalman Filter

1. Initialization:
(x̂0∣0ẑ0∣0

) = (x0z0
) and P0∣0 = Π0,

where ( x0
z0 ) is the initial state estimate and Π0 = cov ( x0

z0 ). Let t = 0.

2. Prediction:

x̂t+1∣t = f̃ (x̂t∣t , ẑt∣t , ut)
0 = g(x̂t+1∣t , ẑt+1∣t)

⇒ (x̂t+1∣tẑt+1∣t
)

P̄t+1∣t = Āt∣t P̄t∣t ĀT
t∣t + Ḡt∣tQḠT

t∣t ,,

where the implication indicates solving x̂t+1∣t and ẑt+1∣t from the system of equations,

Āt∣t = I + Ts (
At∣t Bt∣t

−D−1
t∣tCt∣tAt∣t −D−1

t∣tCt∣tBt∣t
) , (8)

Ts the sampling time, and

Ḡt∣t = ( I
−D−1

t∣tCt∣t
) ,

from (7).

3. Measurement update:

St+1 = H̄t+1∣t P̄t+1∣tH̄T
t+1∣t + R

K̄t+1 = P̄t+1∣tH̄T
t+1∣tS

−1
t+1

x̂t+1∣t+1 = x̂t+1∣t + K̄t+1 (yt+1 − h(x̂t+1∣t , ẑt+1∣t , ut+1))
0 = g(x̂t+1∣t+1 , ẑt+1∣t+1) ⇒ ẑt+1∣t+1

P̄t+1∣t+1 = P̄t+1∣t − P̄t+1∣tH̄T
t+1∣tS

−1
t+1H̄t+1∣t P̄t+1∣t ,

where
H̄t+1∣t = ( ∂h∂x

∂h
∂z )∣( xz )=( x̂ẑ )t+1∣t

.

4. Let t = t + 1 and repeat from 2.
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that are regular, i.e. that det (αĒ − βĀ) ≠ 0 for some (α, β) ∈ C2, this can be described
in terms of Ē, Ā, and H̄.

De�nition 3.1 (R-observable) �e system (9) is called observable within the reachable
set if the zero output of the descriptor system with u = 0 implies that all solutions of this
system satisfy Pr x̄ = 0, where Pr denotes the projection onto the right de�ating sub-space
corresponding to the �nite eigenvalues of λĒ − Ā.

�e concept ofR-observability can, in the linear time-invariant case (9), be charac-
terized algebraically according to the following theorem (Dai, 1989).

�eorem 3.1 �e system (9) isR-observable if and only if

(λĒ − Ā
H̄ )

has full column rank for all λ ∈ C.

R-observability of the engine model is established in 3 steps. First, using�eorem 3.1
on linearizations in stationary operating points along the evaluation trajectory, local weak
R-observability of the linearized continuous time model is established for all t. Second,
observability of a linearization in a stationary operating point is a su�cient condition for
weak local observability of the non-linear system (Lee and Markus, 1968,�eorem 6.4).
�ird, observability does not depend on the choice of discretization method as long as
Ts is chosen small enough (Kalman et al., 1963).

4 Evaluation with Respect to Step Length
�e evaluation is performed by running the two EKF:s based on the default ODE model
and themodi�edDAEmodel. Forward and backward Euler are used for the discretization
of both observers, and the evaluation uses measurement data from an engine in a test
cell, see Appendix A for more information. �e EKF tuning is with respect to the
system and measurement noise covariances, Q and R. For low dimension systems there
exist methods for o�-line computation of these tuning variables (Salvatore et al., 2010).
However, normally at least Q is found by manual tuning while R could be found using
sensor characteristics provided by the sensor manufacturer (Menegaldo et al., 2009).
Here, the measurement noise is a�ected by both sensor characteristics as well as sensor
installation, and is therefore treated in the samemanner asQ, i.e. throughmanual tuning.
�e observers are tuned equally with respect to model and measurement uncertainty
with,

Q = diag (10−4 , 0.1, 1, 1, 1)
and

R = diag (100, 100, 1, 10−8) ,
corresponding to (3a–3d) and (4a) respectively. Stability limits for these settings are
∼15ms for the ODE observers and ∼125ms for the DAE observers which shows that a
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Table 1: Normalized execution times for ODE and DAE based EKF:s with forward and
backward Euler and di�erent step lengths for a 220 s segment in the beginning of an
WHTC. Table entries “–” indicate that the step length was too large for stable simulation
with the current discretizationmethod. “Bold face” entries denote the largest step length
with non-oscillating and stable simulation results for each model and discretization
method.

Model Disc. 3ms 10ms 15ms 50ms 125ms

ODE FE 1 0.30† 0.20† – –
BE 2.50 0.95 0.78 – –

DAE FE 6.23 1.99 1.35 0.45 0.19
BE 4.93 1.63 1.11 0.39 0.16

† Oscillating estimates, see Figure 3b.

signi�cant increase in step length can be achieved for the DAE based EKF compared to
the ODE EKF, see Table 1.

�e performance measure used in the evaluations is the root mean square error,

RMSE =

¿
ÁÁÀ∑t ( ŷt − yt)2

N
, (10)

where ŷt is the estimate and yt the measurement. Since several of the model outputs are
used for feedback (4a) in the EKF:s, an extra model output (4b) not used in the observer,
is used for the evaluation, i.e. pic.

�e evaluation highlights three aspects of the real-time performance of DAE and
ODE based EKF:s. It starts by analyzing the e�ects of sti� models in estimation, then
the forward and backward Euler for the discretization are analyzed, and it �nishes up by
studying the possibility of increased step lengths in the ODE and DAE based EKF:s with
maintained estimation accuracy.

4.1 Effects of Stiff ODE Dynamics
Figure 3 presents the state estimates of both theODE andDAEbased EKF:s, using forward
Euler for the prediction, for a 100 s segment of the WHTC (Economic Commission for
Europe – Inland Transport Committee, 2010) where two di�erent step lengths, 3 and
10ms, have been used.�e main di�erence between 3a, representing simulations with
3ms step length which is the largest step size for which the ODE based EKF estimates
are stable and without oscillations, and 3b, representing a step length of 10ms, is the
oscillating estimates of the ODE observer during high mass-�ow operation. �ese
oscillating properties, observed as a band of noise in Figure 3b of the ODE observer, can
be explained by the sti�ness of the ODE in operating points with wide open throttle, i.e.
high compressor air mass-�ow.

�e estimated probability density functions (PDF) of the estimation errors for the
two observers with two di�erent step lengths are presented in Figure 4. In Figure 4a,
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presenting the estimation error PDF:s for a step length of 3ms, the appearance of the
two observers are rather similar indicating that for a step length of 3ms an EKF based on
an ODE would be preferable due to its less demanding computational complexity. While
for a step length of 10ms the degradation of the ODE estimation error PDF:s for the
outputs closely connected to the throttle, i.e. pim, pic andWc, is apparent in Figure 4b.

4.2 Influence of DiscretizationMethod

A comparison of selected discretization step lengths for forward and backward Euler as
discretization methods is presented in Table 1. It shows that, even though there is a gain
in stability using backward Euler, e.g., non-oscillating estimates for the ODE model, the
upper limit of possible step lengths for stable estimation is not a�ected for either the
ODE or DAE based EKF:s.�at is, the ODE and DAE based EKF:s lose stability for the
same step length, independent of the discretization method, the ODE based EKF for
15ms and the DAE based EKF for 125ms. A key result here is that, while some gain in
stability can be achieved by using a discretization method with better stability properties,
the main gain is achieved by transforming the sti� ODE model into a DAE which results
in a signi�cant increase in step length without loss of stability.
It can be noted that the implementation of backward Euler utilizes a limited number

of Newton iterations for �nding the solution to the di�erential equation.�e limited
number of iterations ensures an upper execution time limit for each time step which is
tuned for a 3ms step length. From Table 1, studying the ODE columns for 3, 10, and 15ms,
it can be seen that the relative execution times between backward and forward Euler are
2.5, 3.2, and 3.9 respectively.�e increasing trend comes from the fact that more Newton
iterations are needed in backward Euler when the step length is increased. Another
interesting remark is that, considering the total system with EKF and backward Euler,
a bene�t not utilized in the implementation is the fact that the EKF could provide the
Jacobian for the Newton iterations, which would reduce the computational complexity
further for backward Euler.

4.3 Step Length Analysis

Figure 5 presents the normalized RMSE of the two observers as a function of step length
for both forward and backward Euler.�e normalization is with respect to the RMSE of
the estimates of the ODE observer with 3ms step length.�e trend of the performance
as a function of the step length is clear for all signals, i.e. the RMSE for the ODE observer
increases more than the RMSE for the DAE observer as the step length increases. Even
though the DAE observer estimates are not the best for all step lengths, for exampleWc
at 3ms step length, the RMSE is equal or better than for the ODE for all step lengths
from 10ms and up, which represents a common timing loop in modern truck ECU:s.
�e reason for the better performance of the ODE observer forWc and 3ms step length
originates from the change of model dynamics that was introduced when the intercooler
pressure dynamics was removed, which also a�ected the throttle dependent dynamics,
discussed in the last paragraph of Section 2.1.
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Figure 3: Estimates of EKF observers based on ODE and DAE models with 3 and 10ms
step lengths and using forward Euler for the prediction. Using the ODE based EKF and
a step size of 10ms, results in a high frequency estimation error, especially prominent for
high pressures corresponding to open throttle operation. It can also be noted that also
the ODE based EKF with 10ms step length would predict the states well if a low pass
�lter was applied. Dotted black lines represent measurements.
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Figure 4: PDF of estimation errors for pim, pic, andWc from observers based on ODE
and DAE models with di�erent step lengths. �e PDF:s of the estimation errors for
simulation step lengths of 3ms are similar for both the DAE and the ODE based EKF:s.
For step lengths of 10ms the ODE based EKF estimation error PDF:s are wider than
those of the DAE based EKF which agrees with the noisy estimates of the ODE based
EKF observed in Figure 3b.
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Figure 5: Normalized RMSE as function of step length for DAE and ODE EKF:s. Both
forward and backward Euler results are presented.�e RMSE is normalized by the ODE
RMSE with 3ms step length for each variable. Presented discretization step lengths are
Ts = 3, 10, 15, 20, 30, 50, 100, and 125ms, where the last �ve only applies to the DAE
observers due to stability issues of the ODE observers. Note that the scale is logarithmic.
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�e performance of the DAE observer with a step length of 125ms is comparable to
the performance of the ODE observer with a step length of ∼10ms. So even if the DAE
observer is computationally more demanding than the ODE observer in each time step
the gain in step length results in a gain in total computational e�ort.
It can be noted that the solver used to compute the state prediction in the DAE

based EKF is not optimized with respect to e�cient evaluation and there exist several
improvements that would reduce the computation time, see for example Brenan et al.
(1989, Section 5.2). Table 2 contains the data of Figure 5a and shows the absolute values
of the RMSE for the estimates. In particular it shows the relation of the RMSE between
the estimated variables that is not shown in Figure 5. For example it shows, for the DAE
observer, that no particular variable estimate distinguishes itself as better, or worse, than
any other including pic.�e data of Figure 5b is consistent with the observations made
in Table 2 for Figure 5a and is omitted.

5 Conclusions
�e bene�t of using DAE based EKF:s instead of ODE:s in real-time applications with
�xed discretization step lengths has been analyzed. �e analysis is performed using
an ODE model of a heavy duty Scania diesel engine with throttle, EGR and VGT, and
a reduced DAE model obtained through removal of one of the volumes surrounding
the throttle causing sti� model dynamics at wide open throttle operation. Criteria
for observability for DAE:s are given and observability of both the DAE and ODE is
established.
Using measurement data, the step length required to get equal performance of the

two observers is investigated. It is shown that, even though the computational complexity
for each time step of the DAE based EKF is higher than for the ODE based EKF, the
possibility to use more than 10 times larger step lengths for the DAE, compared to
the ODE, results in a more computational e�cient implementation with maintained
estimation performance.�e e�ect of discretization method for solving the di�erential
equations is also studied. By comparing forward and backward Euler, representing an
explicit and an implicit di�erential equation solver, it is shown that, even if there is a
signi�cant gain in increased discretization step length for backward Euler, the main gain
is obtained by using a DAE based EKF.



5. Conclusions 129

Ta
bl
e2
:R
M
SE
of
D
A
E
an
d
O
D
E
ob
se
rv
er
sw
ith
fo
rw
ar
d
Eu
le
rf
or
di
�e
re
nt
di
sc
re
tiz
at
io
n
ste
p
le
ng
th
s.

T s
[m
s]

p i
m

p e
m

p i
c

ω
t

W
c

D
A
E

O
D
E

D
A
E

O
D
E

D
A
E

O
D
E

D
A
E

O
D
E

D
A
E

O
D
E

3
1.0
12
⋅1
03

9.
14
3⋅
10
2
1.8
76
⋅1
03

1.8
73
⋅1
03

3.
39
4
⋅1
03

3.
38
9
⋅1
03

8.
85
2⋅
10
1
1.0
94
⋅1
02

1.0
60
⋅10

−
2
5.
77
8⋅
10
−
3

10
2.
13
5⋅
10
3
7.
07
0
⋅1
03

3.
53
4
⋅1
03

3.
54
6
⋅1
03

2.
87
0
⋅1
03

4.
88
0
⋅1
03

9.
61
2⋅
10
1
1.2
80
⋅1
02

1.0
86
⋅10

−
2
1.2
52
⋅10

−
2

15
2.
61
9
⋅1
03

9.
77
4
⋅1
03

3.
99
1⋅
10
3
4.
08
0
⋅1
03

2.
73
1⋅
10
3
7.
80
0
⋅1
03

1.0
35
⋅1
02

1.8
45
⋅1
02

1.0
23
⋅10

−
2
1.7
40
⋅10

−
2

20
2.
92
1⋅
10
3

–
4.
20
9
⋅1
03

–
2.
75
9
⋅1
03

–
1.1
20
⋅1
02

–
1.1
44
⋅1
0−
2

–
30

3.
38
0
⋅1
03

–
4.
42
5⋅
10
3

–
2.
70
1⋅
10
3

–
1.2
41
⋅1
02

–
1.1
23
⋅1
0−
2

–
50

3.
73
4
⋅1
03

–
4.
53
1⋅
10
3

–
2.
84
6
⋅1
03

–
1.4
98
⋅1
02

–
1.2
81
⋅1
0−
2

–
10
0

4.
04
1⋅
10
3

–
3.
06
3⋅
10
3

–
3.
81
7⋅
10
3

–
2.
01
8⋅
10
2

–
1.5
99
⋅10

−
2

–
12
5

4.
22
3⋅
10
3

–
2.
33
6
⋅1
03

–
3.
90
2⋅
10
3

–
2.
25
8⋅
10
2

–
1.6
23
⋅10

−
2

–



130 Paper D. DAE and ODE Based EKF:s and their Real-Time Performance . . .

References
Benedikt Alt, Jan Peter Blath, Ferdinand Svaricek, and Matthias Schultalbers. Multiple
sliding surface control of idle engine speed and torque reserve with dead start assist
control. Industrial Electronics, IEEE Transactions on, 56(9):3580–3592, 2009. ISSN
0278-0046. doi:10.1109/TIE.2009.2021593.

Andrea Giovanni Beccuti, Sébastien Mariéthoz, Sébastien Cliquennois, Shu Wang, and
Manfred Morari. Explicit model predictive control of DC–DC switched-mode power
supplies with extended kalman �ltering. Industrial Electronics, IEEE Transactions on,
56(6):1864–1874, 2009. ISSN 0278-0046. doi:10.1109/TIE.2009.2015748.

Victor M. Becerra, Peter D. Roberts, and GrahamW. Gri�ths. Applying the extended
kalman �lter to systems described by nonlinear di�erential-algebraic equations. Con-
trol Engineering Practice, 9(3):267–281, 2001. ISSN 0967-0661. doi:10.1016/S0967-
0661(00)00110-6.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value
Problems in Di�erential-Algebraic Equations. siam, 1989.

L. Dai. Singular Control Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1989. ISBN 0387507248.

Economic Commission for Europe – Inland Transport Committee. Regulation no 49 of
the economic commission for europe of the united nations (UN/ECE). O�cial Journal
of the European Union, 2010.

Lars Eriksson. Modeling and control of turbocharged SI and DI engines. Oil & Gas
Science and Technology - Rev. IFP, 62(4):523–538, 2007. doi:10.2516/ogst:2007042.

Ingo Friedrich, Chia-Shang Liu, and Dale Oehlerking. Coordinated EGR-rate model-
based controls of turbocharged diesel engines via an intake throttle and an EGR valve.
In Vehicle Power and Propulsion Conference, 2009. VPPC ’09. IEEE, pages 340–347, 2009.
doi:10.1109/VPPC.2009.5289828.

Sergio García-Nieto, Miguel Martínez, Xavier Blasco, and Javier Sanchis. Non-
linear predictive control based on local model networks for air management in
diesel engines. Control Engineering Practice, 16(12):1399–1413, December 2008.
doi:10.1016/j.conengprac.2008.03.010.

Markus Gerdin, �omas B. Schön, Torkel Glad, Fredrik Gustafsson, and Lennart
Ljung. On parameter and state estimation for linear di�erential-algebraic equations.
Automatica, 43(3):416–425, 2007. ISSN 0005-1098. doi:10.1016/j.automatica.2006.09.016.

John B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, Inc., 1988.

Erik Höckerdal, Lars Eriksson, and Erik Frisk. Air mass-�ow measurement and estima-
tion in diesel engines equipped with EGR and VGT. SAE Int. J. Passeng. Cars – Electron.
Electr. Syst., 1(1):393–402, 2008.

http://dx.doi.org/10.1109/TIE.2009.2021593
http://dx.doi.org/10.1109/TIE.2009.2015748
http://dx.doi.org/10.1016/S0967-0661(00)00110-6
http://dx.doi.org/10.1016/S0967-0661(00)00110-6
http://dx.doi.org/10.2516/ogst:2007042
http://dx.doi.org/10.1109/VPPC.2009.5289828
http://dx.doi.org/10.1016/j.conengprac.2008.03.010
http://dx.doi.org/10.1016/j.automatica.2006.09.016


References 131

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer design and model augmenta-
tion for bias compensation with a truck engine application. Control Engineering Practice,
17(3):408–417, 2009. doi:10.1016/j.conengprac.2008.09.004.

Erik Höckerdal, Erik Frisk, and Lars Eriksson. Model based engine map adaptation
using EKF. In 6th IFAC Symposium on Advances in Automotive Control, Munich,
Germany, 2010. doi:10.3182/20100712-3-DE-2013.00051.

Andrew H. Jazwinski. Stochastic Processes and Filtering�eory. Academic Press, April
1970. ISBN 0123815509.

�omas Kailath, Ali H. Sayed, and Babak Hassibi. Linear Estimation. Prentice-Hall,
Inc, Upper Saddle River, New Jersey 07458, 2 edition, 2000.

Rudolf Emil Kalman, Yu-Chi Ho, and Kumpati S. Narendra. Controllability of linear
dynamical systems. Contributions to Di�erential Equations, 1, 1963.

Rudolph Emil Kalman. A new approach to linear �ltering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

Ernest Bruce Lee and Lawrence Markus. Foundations of Optimal Control�eory. John
Wiley & Sons, Inc, New York, 1968.

Paolo Lino, Bruno Maione, and Claudio Amorese. Modelling and predictive control
of a new injection system for compressed natural gas engines. Control Engineering
Practice, 16(10):1216–1230, October 2008. doi:10.1016/j.conengprac.2008.01.008.

Philip Losse and Volker LudwigMehrmann. Controllability and observability of second
order descriptor systems, 2008.

Ravi Kumar Mandela, Raghunathan Rengaswamy, Shankar Narasimhan, and Lak-
shmi N. Sridhar. Recursive state estimation techniques for nonlinear di�erential alge-
braic systems. Chemical Engineering Science, 65(16):4548–4556, 2010. ISSN 0009-2509.
doi:10.1016/j.ces.2010.04.020.

Volker Ludwig Mehrmann and Tatjana Stykel. Descriptor systems: a general mathe-
matical framework for modeling, simulation and control. Technical Report Report
292-2005, DFG Research center Matheon, Berlin, 2005.

Luciano Luporini Menegaldo, Gustavo Ferreira, Melquisedec Francisco Santos, and
Rodrigo Siqueira Guerato. Development and navigation of a mobile robot for �oating
production storage and o�oading ship hull inspection. Industrial Electronics, IEEE
Transactions on, 56(9):3717–3722, 2009. ISSN 0278-0046. doi:10.1109/TIE.2009.2025716.

Martin Müller, Elbert Hendricks, and Spencer C. Sorenson. Mean value mod-
elling of turbocharged spark ignition engines. SAE Technical paper 980784, 1998.
doi:10.4271/980784.

http://dx.doi.org/10.1016/j.conengprac.2008.09.004
http://dx.doi.org/10.3182/20100712-3-DE-2013.00051
http://dx.doi.org/10.1016/j.conengprac.2008.01.008
http://dx.doi.org/10.1016/j.ces.2010.04.020
http://dx.doi.org/10.1109/TIE.2009.2025716
http://dx.doi.org/10.4271/980784


132 Paper D. DAE and ODE Based EKF:s and their Real-Time Performance . . .

Ian Morgan and Honghai Liu. Predicting future states with n -dimensional markov
chains for fault diagnosis. Industrial Electronics, IEEE Transactions on, 56(5):1774–1781,
2009. ISSN 0278-0046. doi:10.1109/TIE.2008.2011306.

Markus Reichhartinger and Martin Horn. Application of higher order sliding-mode
concepts to a throttle actuator for gasoline engines. Industrial Electronics, IEEE Trans-
actions on, 56(9):3322–3329, 2009. ISSN 0278-0046. doi:10.1109/TIE.2009.2026382.

Nadia Salvatore, Andrea Caponio, Ferrante Neri, Silvio Stasi, and Giuseppe Leornado
Cascella. Optimization of delayed-state kalman-�lter-based algorithm via di�erential
evolution for sensorless control of induction motors. Industrial Electronics, IEEE
Transactions on, 57(1):385–394, 2010. ISSN 0278-0046. doi:10.1109/TIE.2009.2033489.

Johan Wahlström and Lars Eriksson. Modeling of a diesel engine with intake throttle,
VGT, and EGR. Technical Report LiTH-R-2976, Department of Electrical Engineering,
Linköpings Universitet, SE-581 83 Linköping, Sweden, 2010.

Johan Wahlström, Lars Eriksson, and Lars Nielsen. EGR-VGT control and tuning
for pumping work minimization and emission control. IEEE Transactions on Control
Systems Technology, 18(4):993–1003, 2010.

Seong-hoon Peter Won, Wael WilliamMelek, and Farid Golnaraghi. A kalman/particle
�lter-based position and orientation estimation method using a position sensor/inertial
measurement unit hybrid system. Industrial Electronics, IEEE Transactions on, 57(5):
1787–1798, 2010. ISSN 0278-0046. doi:10.1109/TIE.2009.2032431.

Elizabeth L. Yip and Richard F. Sincovec. Solvability, controllability, and observability of
continuous descriptor systems. IEEE Transactions on Automatic Control, 26(3):702–707,
jun. 1981. ISSN 0018-9286. doi:10.1109/TAC.1981.1102699.

A EngineModel and Data
�e default model, on which the method is applied, is a 5:th order non-linear state space
model of a six cylinder Scania diesel engine with EGR, VGT, and intake throttle.�e
model states and inputs are presented in Tables 3 and 4, respectively. It is based on a
model originally developed in Wahlström et al. (2010) and extended with intake throttle
in Wahlström and Eriksson (2010).�e modi�cations are that the states for the intake
and exhaust manifold oxygen concentrations and actuator dynamics are removed.

�e data is collected in an engine test cell at Scania CV AB in Södertälje, Sweden.
�e data is from a six cylinder Scania diesel engine with EGR, VGT, and throttle and
was collected during a world harmonized transient cycle (WHTC) Economic Com-
mission for Europe – Inland Transport Committee (2010). �e sensor signals used
are presented in Table 5. All signals are collected with a sampling rate of 100Hz. It
can be noted that the turbo speed sensor is unable to measure rotational speeds below
20 000 rpm (∼2 094 rad/s) and those measurements are therefore excluded in the turbo
speed measure.

http://dx.doi.org/10.1109/TIE.2008.2011306
http://dx.doi.org/10.1109/TIE.2009.2026382
http://dx.doi.org/10.1109/TIE.2009.2033489
http://dx.doi.org/10.1109/TIE.2009.2032431
http://dx.doi.org/10.1109/TAC.1981.1102699


A. Engine Model and Data 133

Table 3: Model states.

State Description Unit

Tem Exhaust manifold temperature K
ωt Turbo speed rad/s
pem Exhaust manifold pressure Pa
pim Intake manifold pressure Pa
pic Intercooler pressure Pa

Table 4: Model inputs.

Input Description Unit

ne Engine speed† rpm
uδ Injected amount fuel mg/cycle
uegr EGR valve position‡ %
uvgt VGT position‡ %
uth Intake throttle position‡ %
Tamb Ambient temperature† K
† Parametrization inputs.
‡ 0 – closed, 100 – open

Table 5: Test cell measurements and model outputs

Output Description Unit

pim Intake manifold pressure Pa
pem Exhaust manifold pressure Pa
ωt Turbo speed rad/s
pic Intercooler pressure† Pa
Wc Compressor air mass-�ow kg/s
† Extra evaluation sensor not used for observer feedback.
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Abstract

A method for bias compensation in model based estimation utilizing model
augmentation is developed. Based on a default model, that su�ers from sta-
tionary errors, and measurements from the system a low order augmentation
is estimated. �e method handles models described by di�erential algebraic
equations and the main contributions are necessary and su�cient conditions
for the preservation of the observability properties of the default model during
the augmentation.
A characterization of possible augmentations found through the estimation,
showing the bene�ts of adding extra sensors during the design, is included.
�is enables reduction of estimation errors also in states not used for feedback,
which is not possible with for example PI-observers. Beside the estimated
augmentation the method handles user provided augmentations, found through
e.g. physical knowledge of the system.
�e method is evaluated on a nonlinear engine model where its ability to incor-
porate information from additional sensors during the augmentation estimation
is clearly illustrated. By applying the method the mean relative estimation error
for the exhaust manifold pressure is reduced by 55%.
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1 Introduction
Accurate information of the internal state of systems is important for ful�lling the
increasing demands on control accuracy and fault detection. At the same time the overall
cost has to be kept as low as possible, which o�en implies that it is insu�cient to rely
upon only physical sensors. As a consequence, model based estimation has attracted
attention.
A common situation is that models based on �rst principles exist and it is desirable

to be able to use them for observer design. However, these models o�en have undesired
properties that prevent them from being directly applicable for estimation in embedded
systems, such as engine control units (ECU). One such de�ciency is that, even if the
system dynamics is well described, the models can su�er from stationary errors, or biases
(Höckerdal et al., 2008). Figure 1 illustrates this with experimental data from an engine
where the model captures dynamics well while there is a bias in the estimate.

�e number of models described by di�erential algebraic equations (DAE) are in-
creasing, partly due to modern modeling tools such as Dymola and Simscape that o�en
deliver DAE models and since DAE:s are a way of describing systems with both fast
and slow dynamics.�e latter arise when approximating fast dynamics with algebraic
constraints, i.e. instantaneous dynamics. DAE applications range from electrochemical
and reactive distillation processes (Mandela et al., 2010) to combustion engines (Lino
et al., 2008; García-Nieto et al., 2008; Höckerdal et al., 2011).

�e objective is to develop a method that enables usage of biased default models for
estimation with reduced estimation bias where the reduction is achieved using model
augmentation. Central in the method is preservation of the observability properties of
the, biased, default model.�e method is as an extension of the method developed for
ordinary di�erential equations (ODE) in Höckerdal et al. (2009) to systems described by
DAE:s.

2 Problem Formulation & Solution Outline
Designing an observer based on a model that predicts the system dynamics well but
su�ers from stationary errors will result in biased estimates (Höckerdal et al., 2008).
Common ways to reduce bias in observers are; i) to use so called PI-observers (Sö�ker
et al., 1995; Koenig and Mammar, 2002) that introduce integrators for the feedback
signals, ii) by physical knowledge introduce extra states to compensate for known model
de�ciencies (Andersson and Eriksson, 2001), or iii) to estimate a minimal augmentation
that reduces the bias (Höckerdal et al., 2009).

�e objective is to reduce bias in estimates for observers based on DAE:s in a system-
atic manner without involving extensive modeling e�orts in a similar way as for ODE:s
in Höckerdal et al. (2009).�e starting point is a default, semi-explicit, DAE model

ẋ = f (x̄ , u) (1a)
0 = g(x̄ , u) (1b)
y = h(x̄ , u), (1c)
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Figure 1: Biased estimates for intercooler pressure in a heavy duty diesel engine. Le�:
Measured and estimated intercooler pressure. Right: Normalized histogram of the
corresponding estimation error which clearly is biased.

where x̄ = ( x
z ) ∈ Rn x̄ , x and z denote di�erential and algebraic variables respectively,

and measurements, (u, y), y ∈ Rn y , u ∈ Rnu . �e method generally handles DAE:s

of di�erential index 1, i.e.
∂( gh )
∂z has full column rank. Henceforth, and without loss

of generality, it is assumed that ∂g∂z has full column rank. It is assumed that the model
described by (1) captures the system dynamics well but su�ers from stationary errors, i.e.
the model is biased. A possible solution is obtained by considering the bias as an o�set
error during stationary operation of the system.

A way to describe stationary errors is to adjust the default states of the system
according to (x̄ − Aqq), where q is a bias state and Aq is its e�ect on the default states.
By introducing q as new states with constant derivatives, q̇ = 0, and driving noise, it
is possible to describe a bias that varies with operating point. It is desirable to have as
few bias states q as possible and the method describes a way to estimate a low order
augmentation Aq from measurement data.

�e idea is then to design an observer based on the augmented model,

ẋ = f (x̄ − Aqq, u) (2a)
0 = g(x̄ − Aqq, u) (2b)
q̇ = 0 (2c)
y = h(x̄ , u), (2d)

where q ∈ Rnq , denoted Aug., which will have better stationary estimation accuracy than
an observer based on the default model.�e observer design used is the discrete time
extended Kalman �lter (EKF) (Jazwinski, 1970) and speci�cally the for DAE:s modi�ed
version presented in Höckerdal et al. (2011).
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3 EKF for DAE Systems
�e EKF algorithm used originates fromMandela et al. (2010), and was slightly modi�ed
in Höckerdal et al. (2011). It is similar to the standard EKF; it consists of two steps,
prediction and measurement update. �e di�erential part of the DAE �ts nicely into
the standard EKF. To enable use of the standard EKF for both di�erential and algebraic
states the linearized algebraic subsystem is di�erentiated once

ẋ = Atx + Btz
0 = Ctx + Dtz

⇒
ẋ = Atx + Btz

ż = −D−1
t Ct ẋ,

(3)

where

(At Bt
Ct Dt

) = (
∂ f
∂x

∂ f
∂z

∂g
∂x

∂g
∂z

) .

To save space the inputu has been omitted in (3). Note that inputs with discontinuous �rst-
order derivatives are not allowed in the algebraic submodel (1b), due to the di�erentiation
in (3). Normally this is not a problem since a low-pass �lter on the inputs can be
introduced.

�e algorithm used can be summarized as

Prediction:
State prediction is done as follows

x̂t+1∣t = x̂t∣t + Ts f (x̂t+1∣t , ẑt+1∣t , ut+1)
0 = g(x̂t+1∣t , ẑt+1∣t)

⇒ (x̂t+1∣tẑt+1∣t
) ,

where the implication indicates solving x̂t+1∣t and ẑt+1∣t from the system of equa-
tions de�ned by (1a) and (1b) using backward Euler.

Covariance matrix prediction

P̄t+1∣t = Āt∣t P̄t∣t ĀT
t∣t + Ḡt∣tQt+1ḠT

t∣t ,

where

Āt∣t = I + Ts (
At∣t Bt∣t

−D−1
t∣tCt∣tAt∣t −D−1

t∣tCt∣tBt∣t
) , (4)

Ts denotes discretization step length, and

Ḡt∣t = ( I
−D−1

t∣tCt∣t
) .

Ḡt∣t is a result of the di�erentiation in (3) and implies that system noise is present
in the di�erential variables of the DAE only, i.e. x-variables.
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Measurement update:
Innovation covariance

St+1 = H̄t+1∣t P̄t+1∣tH̄T
t+1∣t + Rt+1

Kalman gain

K̄t+1 = P̄t+1∣tH̄T
t+1∣tS

−1
t+1

State

x̂t+1∣t+1 = x̂t+1∣t + K̄t+1 (yt+1 − h(x̂t+1∣t , ut+1))
0 = g(x̂t+1∣t+1 , ẑt+1∣t+1) ⇒ ẑt+1∣t+1

Covariance matrix

P̄t+1∣t+1 = P̄t+1∣t − P̄t+1∣tH̄T
t+1∣tS

−1
t+1H̄t+1∣t P̄t+1∣t

4 Observability of the AugmentedModel
In estimation the concept of observability, or detectability, is used to analyze the esti-
mators’ ability to provide consistent estimates that asymptotically converge to the true
states.�is section addresses the observability of the augmented model (2) given the
observability properties of the default model (1), i.e., which Aq :s are allowed, given that
the observability of the default model must not be compromised. Since the observability
of a linearization in a stationary operating point is a su�cient condition for local observ-
ability of the nonlinear system (Lee and Markus, 1968,�eorem 6.4), the observability
analysis is conducted on model linearizations.

4.1 DAE Observability
Before presenting the main results an overview of de�nitions and theorems used to assess
observability for systems described by di�erential algebraic equations is given.
For DAE:s there exist several concepts of observability, i.e. complete observability,

observability within the reachable set, and impulse observability (Mehrmann and Stykel,
2005; Dai, 1989; Losse and Mehrmann, 2008).

De�nition 4.1 (C-observable) �e system

F(t, x , ẋ , u) = 0
y −H(t, x) = 0,

(5)

is completely observable if the zero output of the descriptor system with u = 0 implies that
this system has the trivial solution x = 0 only.
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Generally, descriptor systems are not C-observable since they contain algebraic
constraints that force the solution and output, onto a speci�c manifold. For this reason
the observability within the reachable set, i.e.R-observability, is introduced.�is concept
needs an appropriate projection of the dynamical part of the system, sometimes referred
to as the slow sub-system, onto a manifold de�ned by the algebraic equations, or fast
sub-system. For linear time-invariant systems

Eẋ = Ax + Bu
y = Cx ,

(6)

that are regular, i.e. that det (αE − βA) ≠ 0 for some (α, β) ∈ C2, this can be expressed
in terms of the system matrices E, A, and C.

De�nition 4.2 (R-observable) �e system (6) is called observable within the reachable
set if the zero output of the descriptor system with u = 0 implies that all solutions of this
system satisfy Prx = 0, where Pr denotes the projection onto the right de�ating sub-space
corresponding to the �nite eigenvalues of λE − A.

A last observability de�nition concerns the problem that arises when descriptor
systems that are not strangeness-free (Kunkel and Mehrmann, 2006), i.e. have di�er-
entiation index larger than 1, are driven by inputs that are only piecewise continuous
(Mehrmann and Stykel, 2005).�en, since the solution may depend on the derivative of
the input, any classical solution may not exist.

De�nition 4.3 (I-observable) �e system (6) is called impulse observable if the output
is continuous when a step is used as input.

In the linear time-invariant case, (6), these concepts can be characterized algebraically
in terms of E, A, and C, see for example Dai (1989) for theorems and proofs.

�eorem 4.1 �e system (6) is

1. C-observable if and only if

(αE − βA
C )

has full column rank for all (α, β) ∈ C2/{(0, 0)}.

2. R-observable if and only if

(λE − A
C )

has full column rank for all λ ∈ C.

3. I-observable if and only if
⎛
⎜
⎝

E
KT

ETA
C

⎞
⎟
⎠

has full column rank, where the rows of KET span Ker ET .
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Note that the system (6) is C-observable if and only if it isR-observable and ( E
C )

has full column rank. Furthermore, a descriptor system (6) with a regular pencil λE − A
with di�erentiation index less than two is I-observable (Mehrmann and Stykel, 2005;
Dai, 1989).

4.2 Possible Augmentations
Based on the theory presented in Section 4.1, necessary and su�cient conditions for
preserving the observability properties of the defaultmodel throughout the augmentation,
are now given and proven.
Using�eorem 4.1 it is possible to characterize the allowable model augmentations

for a descriptor system,

Eẋ = A(x − Aqq) + Bu

q̇ = 0
y = Cx ,

(7)

i.e. augmentations Aq that preserve the observability of the default model (6).

�eorem 4.2 �e observability of (6) is preserved during model augmentation according
to (7) if and only if

A(Aq NC) ,
has full column rank, where the columns of NC span KerC.

Worth noting is that even though there are three observability concepts, there is only
one requirement. �is due to the structure of the augmented system with Ē = ( E 0

0 I )
which gives full column rank of the augmentation subsystem.

Proof �e di�erent observability properties of (7) are preserved if and only if x = 0,
q = 0 is the only solution to the corresponding algebraic conditions in�eorem 4.1.
Rewriting the augmented system according to

Ē
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
(E 0
0 I)

˙̄x
¬
(ẋq̇) =

Ā
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(A −AAq
0 0 )

x̄
¬
(xq) +(B0)

y = (C 0)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

C̄

(xq)
(8)

and applying�eorem 4.1 to the augmented system (8):

R-observability is preserved if and only if x = 0, q = 0 is the only solution to

(λE − A) x + AAqq = 0 (9a)
λIq = 0 (9b)
y = Cx (9c)
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for all λ ∈ C. For λ ≠ 0 it is immediate from (9b) that q = 0.�en the assumption
that (6) isR-observable together with (9a), (9c) and�eorem 4.1 gives that x = 0.
�us only λ = 0 needs further investigation.
For λ = 0 in (9) the augmented model isR-observable if and only if x = 0, q = 0
is the only solution to

−Ax + AAqq = 0, (10a)
Cx = 0. (10b)

Let the columns of NC be a basis for KerC, then, from (10b), x = NC ξ for some
arbitrary ξ andR-observability is equivalent to q = 0, ξ = 0 being the only solution
to

−A(NC ξ − Aqq) = 0,
which is equivalent to the matrix

A(NC Aq)
having full column rank.

C-observability is equivalent toR-observability with the additional requirement that

(ĒC̄) =
⎛
⎜
⎝

E 0
0 I
C 0

⎞
⎟
⎠

(11)

has full column rank (Dai, 1989).�e fact that the rank of a block diagonal matrix
is equal to the sum of the ranks of the blocks (Lancaster and Tismenetsky, 1984)
and the assumption that

(EC)

has full column rank now gives that also C-observability is preserved if and only if
A(NC Aq)

has full column rank.

I-observability is preserved if and only if

⎛
⎜⎜
⎝

Ē
KT

ĒT Ā
C̄

⎞
⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

E 0
0 I

KT
ETA −KT

ETAAq
C 0

⎞
⎟⎟⎟
⎠

has full column rank.�e Kernel of Ē is equal to the Kernel of E, padded with
zeros to the dimension of Ē. Again using that the rank of a block diagonal matrix
is the sum of the ranks of the blocks and the assumption that

⎛
⎜
⎝

E
KT

ETA
C

⎞
⎟
⎠

has full column rank the preservation of the I-observability follows. ◻
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5 Augmentation Estimation
A�er establishing a theoretical basis for all possible augmentations that preserve the
default model observability properties, the method of estimating a low order model
augmentation is presented.

�e augmentation estimation procedure is divided into two steps; i) estimate the
bias, and ii) compute a basis for the bias space. �e bias estimation is performed by
augmenting the default model fully, that is introduce as many bias states as possible
without compromising the observability criteria,

rankA(NC Aq) ≤ nx̄ − ny + nq ≤ nx̄ ,

found in Section 4.2.�is means that the augmentation Aq can have at most as many
columns as there are measurements, nq ≤ ny . Also, from�eorem 4.2, these columns
have to be linearly independent of the columns of NC and can not lie in KerA.
A simple way to construct such an augmentation is to use C†, where † denotes the

Moore-Penrose inverse (Lancaster and Tismenetsky, 1984, Exercise 5.1.7 and Proposi-
tion 12.8.2), and exclude the columns that become zero when multiplied by A from
the le�. Based on the fully augmented model, an observer that estimates both x̂ and q̂,
enabling the computation of bias estimates,

βt = C† q̂t ,

can be constructed.
Central in the bias estimation is that the entire operating region of the system is

spanned, otherwise the estimated bias samples might not represent the actual bias for all
operating points.
Given bias estimates, a basis for the bias is computed using a singular value decom-

position (SVD) (Lancaster and Tismenetsky, 1984) of the bias estimates. To increase
the computational e�ciency and allow easier weighting of the biases from di�erent
stationary operating points, the average of the bias samples from each operating point is
computed.�ese averaged bias samples from N operating points are collected

β̄n x̄×N = (w1β1 ⋯ wNβN) ,
N

∑
1
w i = 1,

for which the corresponding SVD is computed

β̄ = UΣV∗ , (12)

where β i indicates the averaged bias in operating point i, and w i is the corresponding
importance weight. In (12) the columns ofU contains orthonormal vectors spanning the
bias space and Σ the corresponding singular values.�e augmentation dimension can
be found by analyzing the singular values and pick out the most signi�cant ones.�en
Âq is constructed by assembling the corresponding columns of U .
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5.1 Augmentation Properties
In Section 4.2 the set of possible augmentations is analyzed, and it is apparent that the
measurement equation plays a central role in which augmentations that are possible to
�nd.�is is also given by the bias estimation in Section 5, i.e. that β = C† q̂.
From an engineering perspective this is interesting since it means that it is possi-

ble to, temporarily augment the measurement equation in for example a development
environment, to increase the set of possible augmentations. Increasing the set of possi-
ble augmentations like this gives the possibility reduce bias also in states not used for
feedback in the �nal application.
Also note that, even though the main idea with the method is to estimate an aug-

mentation using system measurements, it is possible to provide an augmentation found
through physical knowledge or engineering intuition, as long as it ful�lls�eorem 4.2.

6 Experimental Evaluation
�e method is evaluated on a heavy duty Scania diesel engine with exhaust gas recir-
culation (EGR), variable geometry turbocharger (VGT), and intake manifold throttle.
�e evaluation is based on experimental data collected in an engine test cell.�e model
used, presented with states, mass-�ows, inputs, and outputs in Figure 2, is the same
as in Höckerdal et al. (2011), originally developed in Wahlström and Eriksson (2010).
�e modi�cations are twofold; i) removal of actuator dynamics, and ii) elimination
of the intercooler pressure state with fast dynamics, both with the aim to improve the
computational e�ciency of the resulting EKF. By the latter modi�cation the original
model, described by ODE:s, is transformed into a system of DAE:s.
Designing a standard EKF on the default model directly gives biased estimates which

is obvious from Figure 4, where the estimation error probability density functions (PDF)
for all states are biased, i.e., the solid PDF:s are not centered at zero.�e objective is to
use the proposed method from Section 5 to reduce the estimation bias of all system states
except the exhaust manifold temperature, using only measurements of intake manifold
pressure, intercooler pressure, and turbine speed.�e reason for not including Tem in
the evaluation is that there is no reference measurement for that state available.

6.1 Augmentation Estimation
�e model augmentation, Aq , is computed using a measurement sequence containing
a large number of di�erent stationary operating points, spanning the whole operating
region of the engine. In the experimental environment of the engine test cell, the sensor
setup is larger than in the intended customer application which is used to improve the
augmentation. �at is, extra sensors during the augmentation estimation allows bias
compensation of also non-measured states, recall the discussion in Section 5.1. In the
studied example the application includes measurements of the states ωt, pim, and pic
while the experimental setup also allows measurement of pem, which is utilized in the
augmentation estimation.
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Figure 2: Schematics of the diesel engine used in the evaluation, showing the di�erential
states (pim, pem, Tem, and ωt), algebraic state (pic), inputs (uegr, uvgt, uδ , uth, and ne),
and �ows between components (Wc,Wth,Wegr,Wei,Weo, andWt).

Bias estimates, estimated according to Section 5, from 42 stationary operating points
is used to �nd a low order augmentation Aq . In this case each operating point is weighted
equally, i.e. w i = 1

N since no information of a suitable distribution is available. �e
resulting singular values and vectors used to determine the augmentation are presented
in Figure 3.�e construction of Aq , i , where i indicates augmentation dimension, is done
by assembling the i singular vectors that have the largest singular values, e.g.,

Aq ,3 =
⎛
⎜⎜⎜
⎝

−0.013 −0.023 0.071
−0.555 −0.485 −0.676
−0.431 −0.528 0.729
−0.712 0.697 0.084

⎞
⎟⎟⎟
⎠
.

�ree augmented observers, Aq ,1, Aq ,2, and Aq ,3, are designed, where the maximal
dimension, i.e. dimAq ,3 = 3, is limited by the three dimensional measurement equation
in the EKF.

6.2 Estimation Performance
�e estimation performance is evaluated by comparing the observers with di�erent
augmentation dimension and an observer based on the default model using data from
a WHTC (Economic Commission for Europe – Inland Transport Committee, 2010).
As performance measures the mean relative error, and the estimation error probability
density function, are used. Together these measures capture both estimation bias and
variance.�e results are presented in Table 1 and Figure 4.
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Figure 3: SVD singular values presented with the corresponding singular vector used
for determining the augmentation, Aq . �e vector components, from top to bottom,
correspond to ωt, pem, pim, and pic.

Table 1: Mean rel. error for the default and augmented observers. All
with feedback from pim, ωt, and pic only.

Outputs
Mean relative error – [%]

Def. Aq ,1 Aq ,2 Aq ,3

ωt -2.1 0.1 0.3 0.5
pem 6.8 5.6 8.5 3.0
pim -1.6 -1.5 -0.1 -0.2
pic 0.1 0.06 -0.09 0.07

Figure 4 shows that with a one dimensional augmentation, Aq ,1, a signi�cant reduc-
tion of the estimation error is achieved for the states where feedback is available, i.e. ωt,
pim, and pic. A further indication of the performance of the augmented observer is given
by the estimation error of the observer output that is not explicitly used for feedback,
i.e. pem. Table 1 clearly shows that in this case a mean estimation error reduction of
approximately 55% is achieved for pem using a three dimensional augmentation, Aq ,3.
�is shows a clear advantage of the proposedmethod compared to for example normal PI-
observers (Sö�ker et al., 1995) that have integrators a�ecting the feedback variables only,
i.e. the methods ability to incorporate extra sensors during the augmentation estimation.

7 Conclusions
Amethod for estimating a low dimension model augmentation for bias compensation
given a default model and system measurements that is applicable to models described
by DAE:s, is developed. A theorem that characterizes all possible augmentations that
preserve the observability properties of the default model is given, and a characterization
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Figure 4: PDF for the estimation errors during a WHTC. It is obvious that all outputs
that are compensated through feedback, i.e. pim, pic, and ωt, bene�t from any choice
of augmentation dimension. For pem however, a three dimensional augmentation is
required to achieve a signi�cant bias reduction.

of the augmentations that are possible to estimate is presented. Common for both
are that they are mainly limited by the available measurements. Beside the estimated
augmentation the method allows user de�ned augmentations.
A main advantage of the proposed model augmentation method, compared to for

example PI-observers, is its ability to incorporate information from additional sensors
during the design to estimate an augmentation that can also reduce estimation errors in
states not used for feedback.

�e method is applied to a heavy-duty diesel engine with EGR, VGT, and intake
throttle, using a nonlinear default DAE and measurements from an engine test cell.�e
data used is collected during a WHTC. It is shown that a one dimensional augmentation
signi�cantly reduces the mean estimation error for states where feedback is available. It
is also shown that a 3 dimensional augmentation reduces the mean estimation error by
as much as 55% for the non-measured exhaust manifold pressure.
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Linköping Studies in Science and Technology
Dissertations, No 1366

Erik Höckerdal
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