
Lecture 3

Simulation of differential-algebraic equations

Erik Frisk
erik.frisk@liu.se

Department of Electrical Engineering
Linköping University

February 23, 2022

1 / 75

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

2 / 75

BDF solver

DASSL is an implementation/code to solve systems of
differential-algebraic equations of index 0 or 1

SUNDIALS is another free, more modern, implementation. Written in
C and not Fortran.

Fairly straightforward (at least on Linux and Mac) to install on your
computer if you are used to compiling your own software.
Installed on charger.ad.liu.se

Why am I talking about DASSL?

Basic principle, one-step and multiple step

A little on what it is good at

Some principles on details

3 / 75

Basic principle

For a DAE in the form

F (t, y , y ′) = 0

y(t0) = y0

y ′(t0) = y ′0

the DASSL basic principle is not unique, replace the derivative for a
difference approximation and solve the resulting system of equations with
a Newton method.
Properties of the DASSL implementation:

Variable step-length

Variable order

Efficient implementation, for example measured in the number of
evaluations of the function F .

4 / 75

DASSL - first order step
Replace the derivative with a first order BDF, then

F (tn+1, yn+1, (yn+1 − yn)/hn+1) = 0

A direct Newton method to solve for yn+1 then becomes

y
(m+1)
n+1 = y

(m)
n+1 −

(
Fy +

1

hn+1
Fy ′

)−1

F (tn+1, y
(m)
n+1, (y

(m)
n+1 − yn)/hn+1)

where Fy and Fy ′ is evaluated in y
(m)
n+1.

With a good stop condition on the iterations so this is approximately how
it works. I will now briefly look at:

higher order algorithm

strategies for choice of order, step-length

stop conditions for the Newton iterations

Fy + αFy ′ – iteration matrix (sometimes referred to as the jacobian)

5 / 75

DASSL - a step of order k

1 Compute a prediction polynomial ωP(t) based on k previous
time-points

2 Compute a correction polynomial ωC (t), equal ωP(t) on k
equidistant (hn+1) previous time-steps

3 Predict next time-step using prediction polynomial

6 / 75

DASSL - a step of order k, cont’d.
There are yn−i that approximates y(tn−i) for i = 0, . . . , k . Wanted: yn+1.

Prediction polynomial - ωP
n+1(t), order k

ωP
n+1(tn−i) = yn−i , i = 0, . . . , k

Prediction for yn+1 and y ′n+1 is then given by

y
(0)
n+1 = ωP

n+1(tn+1)

y ′
(0)
n+1 = ω′P

n+1(tn+1)

Correction polynomial - ωC
n+1(t), order k

ωC
n+1(tn+1 − ihn+1) = ωP

n+1(tn+1 − ihn+1), i = 1, . . . , k

F (tn+1, ω
C
n+1(tn+1), ω

′C
n+1(tn+1)) = 0

i.e. yn+1 = ωC
n+1(tn+1)

Note: fixed vs. variable step length. 7 / 75

DASSL - a step of order k, cont.

Skips a lot of notation and rather straightforward algebra,

Equations to be solved

ωC
n+1(tn+1 − ihn+1) = ωP

n+1(tn+1 − ihn+1), i = 1, . . . , k

F (tn+1, ω
C
n+1(tn+1), ω

′C
n+1(tn+1)) = 0

can be written as the solution to the nonlinear equation

F (tn+1, yn+1, αyn+1 + β) = 0

i.e. the same form that we had in the one step case (not so surprising)

F (tn+1, yn+1, (yn+1 − yn)/hn+1) = 0

but the constants α and β depends on the step length hn+1, order k and
yn−i in a non-trivial way. Exactly how is not of main importance here.

8 / 75

DASSL - a step of order k, cont.

Now solve
F (t, y , αy + β) = 0

by
y (m+1) = y (m) − c (αFy ′ + Fy)︸ ︷︷ ︸

iteration matrix G

−1F (t, y (m), αy (m) + β)

Each iteration is solved by G = LU factorization. With
δ(m) = y (m+1) − y (m) and r (m) = cF then

Ls(m) = r (m)

Uδ(m) = s(m)

9 / 75

The iteration matrix, strategies

To make an iteration, compute G and LU factorize.

y (m+1) = y (m) − cG−1F (t, y (m), αy (m) + β)

Why is this important? Mostly to state that computation of G and the
corresponding LU factorization is a main part (even dominant for large
models) of the computational burden for one integration step.

If Fy ′ and Fy varies slowly over the solution, reuse old already computed

Ĝ . As long as Ĝ is sufficiently close to G we can expect on convergence.

Supervise convergence speed and compute a new G only when
convergence speed is not satisfactorily.

10 / 75

DASSL - stop conditions in Newton iterations
An important aspect is when to stop the Newton iterations. To directly
look at ∥y (m+1) − y (m)∥ is not always a good idea. Instead, define

d (m) =
∥y (m+1) − y∗∥
∥y (m) − y∗∥

and assume that we know an upper bound on d (m) < ρ, direct usage of
the triangle inequality gives a stop condition

∥y (m+1) − y∗∥ ≤ ρ

1− ρ
∥y (m+1) − y (m)∥

Use, for example, the largest

∥y (m+1) − y (m)∥
∥y (m) − y (m−1)∥

observed so far as an estimate on ρ.

In DASSL, max 4 iterations! If ρ > 0.9, compute a new G . If the iteration
still not converges (4 steps), reduce step length by 1/4. After 10 tries,
abort.

11 / 75

DASSL - order selection and step length

Order selection

Estimates, through some clever algebra, error of yn+1 − y(tn+1) as a
function of different orders

c1 = error term of order k − 1

c2 = error term of order k

c3 = error term of order k + 1

c4 = error term of order k + 2

The basic principle is that c1 > c2 > c3 > c4. Otherwise, lower the order
to be more secure.

Step length

After a new order is chosen, estimate the error as if the latest k steps are
taken with the same step length such that the error estimate fulfills the
tolerance condition

ERR = M∥yn+1 − y
(0)
n+1∥ ≤ 1

12 / 75

Automatic Differentiation
An analytical expression for the iteration matrix/system jacobian

G = Fy + α Fy ′

is good for efficiency and accuracy.

How do we get G?

Encode not only F but also G and send to DASSL.

Difference approximations of the derivative.

Automatic Differentiation/Algorithm differentiation

Automatically separate function F into elementary operations.

The derivative by direct application of the chain rule

C/C++/Python/Fortran/Julia/Java/. . . , mature field with many
tools

Some solvers has direct support for automatic differentiation

13 / 75

SUNDIALS

SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers

Software library consisting of 6 different solvers, written in C.
https://computing.llnl.gov/casc/sundials

CVODE(S)
Solves IVP for ordinary differential equation (ODE) systems. Includes
sensitivity analysis capabilities (forward and adjoint).

IDA(S)
Solves IVP for differential-algebraic equation (DAE) systems. Includes
sensitivity analysis capabilities (forward and adjoint).

ARKode
Solves IVP ODE problems with additive Runge-Kutta methods,
including support for IMEX methods.

KINSOL
solves nonlinear algebraic systems.

Lots of functionality not available in vanilla Matlab/Python/Julia.
14 / 75

SUNDIALS

Written in C with interfaces to Fortran (77 and 2003)

Designed to be incorporated into existing codes

Nonlinear and linear solvers and all data use is fully encapsulated from
the integrators and can be user-supplied

Parallelism is directly supported

Support for GPU computations

Through the ECP, developing a rich infrastructure of support on
exascale systems and applications

Freely available; released under the BSD 3-Clause license (>27,000
downloads in 2019)

See https://computing.llnl.gov/sites/default/files/SUNDIALS_
ECP_Tutorial_2020_Final_0.pdf

for a fairly recent presentation of Sundials and its capabilities.

15 / 75

Sundials - code and documentation

If you are interested in more details, and how the code is organized and
works, see the documentation

https://sundials.readthedocs.io/en/latest/idas/

Fairly easy to install on Linux/Mac (haven’t tried on Windows).

Installed on charger.ad.liu.se if you want to try.

Included a, non mandatory, exercise for you to make some first
simulations.

16 / 75

https://computing.llnl.gov/casc/sundials
https://computing.llnl.gov/sites/default/files/SUNDIALS_ECP_Tutorial_2020_Final_0.pdf
https://computing.llnl.gov/sites/default/files/SUNDIALS_ECP_Tutorial_2020_Final_0.pdf
https://sundials.readthedocs.io/en/latest/idas/

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

17 / 75

Sensitivity analysis

Motivation

Parameters in models may not be known accurately or need to be
determined

sensitivity to changes

optimization of variables

parameter identification based on measurement data

We will revisit this problem, already covered in the ODE module, for

F (ẋ , x , t, p) = 0

and you’ll see that the sensitivity equations are similar to the ODE case.

Instead we will spend some time we have a performance measure

G =

∫ T

0
g(x , p, t) dt

and a high-dimensional parameter p.
18 / 75

Sensitivity analysis - forward solution

From the ODE part of the course we know how to compute sensitivity of
the solution x(t, p) with respect to parameters p

xp =
dx

dp

for the ODE
ẋ = f (t, x , p), x(0) = x0(p)

as the solution to the linear ODE

ẋp = fxxp + fp, xp(0) =
dx0(p)

dp

The corresponding equation for a DAE

F (t, ẋ , x , p) = 0, x(0) = x0(p)

is derived in the same way (you will do it in an exercise).

19 / 75

Complexity of sensitivity analysis
What happens if the number of parameters is large? We need to solve

ẋ = f (t, x , p), x(0) = x0(p)

ẋp = fxxp + fp, xp(0) =
dx0(p)

dp

Obtaining forward sensitivities with respect to m parameters is roughly
equivalent to solving an DAE system of size n +m × n.

For example, n = 10 states and m = 20 parameters leads to 210 states in
the sensitivity computation.

What if we are interested in the sensitivity of a scalar, with respect to a
large number of parameters

G (x , p) =

∫ T

0
g(x , t, p) dt =

∫ T

0
gxxp + gp dt

(compare backpropagation in neural networks)

Q: Is there a way to avoid computing all those sensitivities in xp?

20 / 75

Robertson chemical reaction model – common test case

ẏ1 + p1y1 − p2y2y3 = 0

ẏ2 − p1y1 + p2y2y3 + p3y
2
2 = 0

y1 + y2 + y3 − 1 = 0

with the quadrature

G =

∫ T

0
y3(t) dt

10−4 10−1 102 105 108 1011

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

Robertson chemical reaction (DAE model)

y1
y2 * 1e4
y3

Then, the question how to efficiently compute

dG/dp =
(
1.484 · 106 −5.932 9.899 · 10−4

)
without computing the 9 sensitivities

dyi
dpj

, i ∈ {1, 2, 3}, j ∈ {1, 2, 3}

21 / 75

Adjoint sensitivity analysis

Our problem today: Assume the low-index DAE

F (t, ẋ , x , p) = 0, x(0) = x0(p)

and we want to compute the sensitivity dG/dp of the objective function

G (x , p) =

∫ T

0
g(x , t, p) dt

Then
d

dp
G (x , p) =

∫ T

0
gxxp + gp dt

But, as mentioned the xp scales badly (n ×m) with size of p and the
system order. How to compute this without going through xp?

22 / 75

Adjoint sensitivity analysis
Introduce lagrange multipliers λ as

I (x , p) = G (x , p)−
∫ T

0
λTF (x , ẋ , t, p) dt

Since F (x , ẋ , t, p) = 0

d

dp
G (x , p) =

d

dp
I (x , p) =

∫ T

0
gxxp + gp − λT (Fẋ ẋp + Fxxp + Fp) dt

The problem is, as stated before, xp.

Reminder: Integration by parts∫ T

0
f (t)g ′(t) dt = f (t)g(t)|Tt=0 −

∫ T

0
f ′(t)g(t) dt

Now, first look at the term with ẋp:∫ T

0
λTFẋ ẋp dt = λTFẋxp

∣∣∣T
t=0

−
∫ T

0

d

dt

(
λTFẋ

)
xp dt

23 / 75

Adjoint sensitivity analysis

Collect all integrands with xp in a separate term. Can we get rid of those?

d

dp
G (x , p) =

∫ T

0
(gp − λTFp) dt−∫ T

0
[−gx + λTFx −

d

dt

(
λTFẋ

)
]xp dt − λTFẋxp

∣∣∣T
0

The function λ is free to choose, why not choose λ as the solution to the
adjoint differential equation

d

dt

(
λTFẋ

)
− λTFx + gx = 0

Linear, time-varying!

Has size n!!

24 / 75

Adjoint sensitivity
We have

d

dp
G (x , p) =

∫ T

0
(gp − λTFp) dt − λT (T)Fẋ(T)xp(T) + λT (0)Fẋ(0)xp(0)

with
d

dt

(
λTFẋ

)
− λTFx + gx = 0

What about the boundary values? Involves xp(0): easy, we know that one.
But xp(T) is not easy and it was exactly to avoid computing xp we did the
adjoint approach.

A solution: Since any adjoint solution λ is ok, choose λ(T) such that

λT (T)Fẋ(T) = 0 (1)

and solve the adjoint sensitivity equations backwards in time.

Note: (1) only works in general for low-index problems, for high index
models you need to dig deeper.

25 / 75

Adjoint sensitivity – summary

1) do a forward sweep and solve the low-index DAE

F (ẋ , x , t, p) = 0, p = p0

Solution is typically efficiently stored using checkpointing.

2), solve the adjoint DAE

d

dt

(
λTFẋ

)
− λTFx + gx = 0, λT (T)Fẋ = 0

backwards (from T)

3) In the integration, compute the sensitivity by the quadrature

d

dp
G (x , p) =

∫ T

0
(gp − λTFp) dt + λT (0)Fẋ(0)xp(0)

26 / 75

Adjoint sensitivity

Some comments of the adjoint DAE

d

dt

(
λTFẋ

)
− λTFx + gx = 0, λT (T)Fẋ = 0

What about index – same (high index problems more difficult)

What about stability of the adjoint system?
(original problem stable, then adjoint is also stable)

How to efficiently and accurately include the forward solution x(t),
checkpointing

Cao, Yang, et al. ”Adjoint sensitivity analysis for differential-algebraic
equations: The adjoint DAE system and its numerical solution.” SIAM
journal on scientific computing 24.3 (2003): 1076-1089.

Recommendation: Section 1, 2.1, 4.1-4.2 in a first reading.

27 / 75

Repetition: Solving a differential equation backwards

Consider the DAE with an end value condition

F (ẋ(t), x(t), t) = 0, x(T) = xT , ẋ(T) = ẋT

To solve backwards, define

y(τ) = x(T − τ), t = T − τ

Then,

ẋ(t) = −ẏ(T − t) = −ẏ(τ)

x(t) = y(T − t) = y(τ)

and the DAE in reverse time variables becomes

F (−ẏ(τ), y(τ), T − τ) = 0, y(0) = xT , ẏ(0) = ẋT

28 / 75

Return to the Robertson chemical reaction model

ẏ1 + p1y1 − p2y2y3 = 0

ẏ2 − p1y1 + p2y2y3 + p3y
2
2 = 0

y1 + y2 + y3 − 1 = 0

with the quadrature

G =

∫ T

0
y3(t) dt

10−4 10−1 102 105 108 1011

t [s]

−6

−4

−2

0

2

4

6

Sensitivity solutions, y1
dy1/dp1
dy1/dp2
dy1/dp3

If we compute

dG/dp =
(
1.484 · 106 −5.932 9.899 · 10−4

)
using both forward and adjoint techniques, we get the same result.

29 / 75

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

30 / 75

Modelica

Modelica

Modelica is a language for specifying mathematical models for a large class
of systems.

equation based and non-causal, equations not assignments

declarative, not an algorithm (like Simulink)

object oriented

multi domain

continuous and discrete (not time) models, hybrid systems

mainly developed for simulation

high index problem more “more common than not”

Language resources http://modelica.org/

31 / 75

Commercial model editors

32 / 75

http://modelica.org/

Modelica standard library v3.2.2 (2016-04-03)
Blocks Continuous, discrete and logical input/output blocks

(Continuous, Discrete, Logical, Math, Nonlinear, Routing,
Sources, Tables)

Constants Mathematical and physical constants (pi, eps, h, . . .)

Electrical Electric and electronic components (Analog, Digital,
Machines, MultiPhase)

Icons Icon definitions Math Mathematical functions for scalars and
matrices (such as sin, cos, solve, eigenValues, singular values)

Mechanics Mechanical components (Rotational, Translational,
MultiBody)

Media Media models for liquids and gases (about 1250 media,
including high precision water model)

SIunits SI-unit type definitions (such as Voltage, Torque)

StateGraph Hierarchical state machines (similiar power as Statecharts)

Thermal Thermal components (FluidHeatFlow, HeatTransfer)

Utilities Utility functions especially for scripting (Files, Streams,
Strings, System)

33 / 75

Modelica example

Pendulum model of index 3

model Pendulum

import [Skipped some imports]

parameter Real phi0 = 45*pi/180;

parameter Real L = 1, M = 1, g=9.82;

Real x(start=L*cos(phi0)), dx(start=0);

Real y(start=L*sin(phi0)), dy(start=0);

Real lambda;

equation

der(x) = dx;

der(y) = dy;

M*der(dx) = lambda*x;

M*der(dy) = lambda*y-M*g;

0 = x*x+y*y-L*L;

end Pendulum;

34 / 75

Simulation result – pendulum example

35 / 75

Example with components from the standard library

Electrical circuit

class SimpleCircuit

Resistor R1(R=10), R2(R=100);

Capacitor C(C=0.01);

Inductor L(L=0.1);

VsourceAC AC;

Ground G;

equation

connect(AC.p, R1.p);

connect(R1.n, C.p);

connect(C.n, AC.n);

connect(R1.p, R2.p);

connect(R2.n, L.p);

connect(L.n, C.n);

connect(AC.n, G.P);

end SimpleCircuit;

36 / 75

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

37 / 75

Simulation of Modelica models
The path from a Modelica model to C-code looks something like this

38 / 75

Representation of a general DAE

A DAE has the following components

F (x(t), ẋ(t), y(t), u(t), t, θ, c(t)) = 0

x(t) vector of dynamic variables

y(t) vector of static variables

u(t) vector of given input/known signals

θ model parameters

c(t) Event functions (more about these later)

I have skipped discrete variables, see book by P. Fritzons for more details.

39 / 75

Translator

Parse the model file into an AST (Abstract Syntax Tree), a computer
representation of the model

Flatten the model, i.e., resolve all inheritance and component
equations

Change if-expressions to if-equations

if (a>5.0)

val = 10.0;

else

val = 20.0;

end if;

to

val = (if a>5.0 then 10.0 else 20.0);

Change dot-notation to underbar (”.”→” ”)

R1.p.i → R1 p i

Now we have the flattened model
40 / 75

uL

R2

R
1

i0

i1

iL

iC

i2

C

L

U0

uC

u1

u2

model Circuit

Resistor R1;

Resistor R2;

Capacitor C;

Inductor L;

Ground G;

SineVoltage src;

equation

connect(G.p, src.n);

connect(src.p, R1.p);

connect(src.p, L.p);

connect(R1.n, R2.p);

connect(R1.n,C.p);

connect(L.n,R2.n);

connect(L.n, C.n);

connect(C.n,G.p);

end Circuit;

41 / 75

Flattened model

R1.R * R1.i = R1.v;

R1.v = R1.p.v - R1.n.v;

0.0 = R1.p.i + R1.n.i;

R1.i = R1.p.i;

R2.R * R2.i = R2.v;

R2.v = R2.p.v - R2.n.v;

0.0 = R2.p.i + R2.n.i;

R2.i = R2.p.i;

C.i = C.C * der(C.v);

C.v = C.p.v - C.n.v;

0.0 = C.p.i + C.n.i;

C.i = C.p.i;

L.L * der(L.i) = L.v;

L.v = L.p.v - L.n.v;

0.0 = L.p.i + L.n.i;

L.i = L.p.i;

G.p.v = 0.0;

src.signalSource.y = sin();

src.v = src.signalSource.y;

src.v = src.p.v - src.n.v;

0.0 = src.p.i + src.n.i;

src.i = src.p.i;

L.n.i + R2.n.i + C.n.i + G.p.i

+ src.n.i = 0.0;

L.n.v = R2.n.v;

R2.n.v = C.n.v;

C.n.v = G.p.v;

G.p.v = src.n.v;

R1.n.i + R2.p.i + C.p.i = 0.0;

R1.n.v = R2.p.v;

R2.p.v = C.p.v;

src.p.i + R1.p.i + L.p.i = 0.0;

src.p.v = R1.p.v;

R1.p.v = L.p.v;

42 / 75

Analyzer and optimizer

Main objectives

1 Transform the model to state space form (or index 1) through index
reduction

2 Optimize the computation of the model (evaluation of F)

Steps

Basic model analysis, find simple, e.g., linear, equation

Simplify model by eliminating trivial (and some simple) equations by
algebraic manipulation

Compute index and perform index reduction

Find algebraic loops (strong components) with respect to the most
differentiated variables

43 / 75

Analyzer and optimizer, cont.

Three main problems I will not address further today

compute index

perform index reduction and transform the model equations from a
high index formulation to ODE/index-1 DAE

find consistent initial values

All these are strongly connected and the main content of the next lecture.

From now on, it is assumed the model is index 1.

44 / 75

Code generation

Simplified; it is assumed that the model is in the form

F (x ′, x , t) = 0, ci (t), i = 1, . . . , nc

The residual function F (x ′, x , t) and event functions can now be sent
directly to the numerical DAE solver

This is not exactly how OpenModelica operates, it goes one step
further and takes the model into an ODE. More on this later.

On the course web site there is a (rather incomplete) document that
shows by example how OpenModelica transfers a simple model to
C-code. Recommended for the interested.

45 / 75

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

46 / 75

Flat model with index 1 to ODE, OpenModelica

F (x ′, x , y , t) = 0

If the model is low index, then it is possible to solve for the highest
differentiated variables x ′ and y as

x ′ = f (t, x , y)

y = G (t, x)

To generate code there is a need to find a computational scheme for the
functions f and G , preferably as a pure substitution chain.

After that, OpenModelica simulates (with DASSL) x as

ẋ = f (t, x ,G (x))

Remember the initial examples from the first DAE lecture, substitution
chains not always possible.

47 / 75

Remember simple circuit model

uL

R2

R
1

i0

i1

iL

iC

i2

C

L

U0

uC

u1

u2

e1 : u0 = f (t)

e2 : u1 = R1i1

e3 : u2 = R2i2

e4 : iC = C
duc
dt

e5 : uL = L
diL
dt

e6 : i0 = i1 + iL

e7 : i1 = i2 + iC

e8 : u0 = u1 + uC

e9 : uL = u1 + u2

e10 : uC = u2
x1 = (uc , iL), x2 = (u2, i2, u0, u1, uL, i1, iC , i0)

48 / 75

Remember the simple circuit model

R
3

R2

R
1

i0

i1

iL

i3

i2

L

u2

uL
u1

u3

U0

u0 = f (t)

u1 = R1i1

u2 = R2i2

u3 = R3i3

uL = L
diL
dt

i0 = i1 + iL

i1 = i2 + i3

u0 = u1 + u3

uL = u1 + u2

u3 = u2

x1 = iL, x2 = (uL, u2, i2, u0, u1, uL, i1, iC , i0)

49 / 75

Remember the simple circuit model, cont.

diL
dt

=
1

L
uL

u0 := f (t)

Solve for {u1, u2, u3, i1, i2, i3} in (6 unknowns, 6 equations)

u1 = R1i1

u2 = R2i2

u3 = R3i3

i1 = i2 + i3

u0 = u1 + u3

u3 = u2

i0 := i1 + iL

uL := u1 + u2
50 / 75

Example: BLT form of dynamic part of model

An electrical circuit

R2.v = R2.R*L.i

R1.p.v = AC.VA*sin(2*AC.f*AC.PI*time)

L.v = R1.p.v-R2.v

R1.v = R1.p.v-C.v

C.i = R1.v/R1.R

der(L.i) = L.v/L.L

der(C.v) = C.i/C.C

Highest differentiated variables: (R2.v ,R1.p.v , L.v ,R1.v ,C .i , L.i ′,C .v ′)

R2.v R1.p.v L.v R1.v C .i L.i ′ C .v ′

1
1

1 1 1
1 1

1 1
1 1

1 1

51 / 75

Algebraic loops and Tarjans algorithm/BLT form

x6 x9 x4 x7 x2 x10 x3 x8 x5 x1

e7

e8

e5

e4

e6

e9

e1

e2

e10

e3

Variabler

E
k
v
a

ti
o

n
e

r

52 / 75

Algebraic and dynamic loops

An algebraic loop can, in its simplest form, look like

x1 = f1(x2)

x2 = f2(x1)

Here x1 and x2 has to be computed simultaneously using either analytical
tools (not feasible in the general case) or a numerical solver. Two simple
numerical methods are

Newton iterations

Fix point iterations

53 / 75

Tearing
With fix point iterations (and contraction conditions) the loop

x1 = f1(x2)

x2 = f2(x1)

can be solved through the iteration

NEWx2 = INITx2

repeat

x2 := NEWx2

x1 := f1(x2)

NEWx2 := f2(x1)

until converged(NEWx2-x2)

Here it was “clear” where to tear the loop due to the given causality. For a
general loop

fi (x1, . . . , xn) = 0, i = 1, . . . , n

this is not as clear.
54 / 75

Tearing

For a general algebraic loop

fi (x1, . . . , xn) = 0, i = 1, . . . , n

it is generally a difficult problem to choose how to rewrite as a fix point
iteration on the best way; requires knowledge about the analytical
expressions, inversion properties, contraction properties etc.

In the course literature, there is a structural method for choosing tearing
variables

Good choice of tearing variables is often based on physical insight and
therefore it is possible to introduce such information in the model
definition (not discussed further here)

55 / 75

Tearing, example 1

Below is a system of equations, which is an algebraic loop.

c : u3 = R3i3

d : u1 = u0 − u3 (u0 known)

a : i1 = 1/R1 u1

e : u2 = u3

b : i2 = 1/R2 u2

f : i1 − i2 − i3 = 0

Choose i3 as tearing variable in equation f .
Then we get an equation to solve numerically

f : g(i3, i1(i3), i2(i3)) = g̃(i3) = 0

For example by Newton iterations

i
(k+1)
3 = i

(k)
3 − g̃ ′(i

(k)
3)−1g̃(i

(k)
3)

56 / 75

Tearing, example 2

Instead, choose i1 in equation a as a tearing variable

a : u1 − R1i1 = 0

b : u2 − R2i2 = 0

c : u3 − R3i3 = 0

d : u1 + u3 − u0 = 0

e : u2 − u3 = 0

f : i1 − i2 − i3 = 0

Then we do not get anywhere. No new variable can be computed even
though i1 is assumed known.

57 / 75

Tearing, example 3

Now, choose a tearing variable, u2 in equation b, then it all clears out

e : u3 = u2

c : i3 = 1/R3 u3

d : u1 = u0 − u3

f : i2 = i1 − i3

and the following two equations has to be solved, for example by Newton
iterations for variables i1 and u2

a : u1 − R1i1 = 0

b : u2 − R2i2 = 0

58 / 75

Tearing, conclusions

Tearing is used to tear algebraic loops apart into smaller parts

The objective is to rewrite a large system of equations into smaller
systems of equations that can be solved numerically

Choice of tearing variables and equations is complex, NP-hard to find
a minimal set of tearing variables.

A simple heuristic

1 Choose an equation e that contains the most unknown variables

2 In equation e, for each variable v compute how many variables that
can be computed by a direct substitution chain of v is assumed
known.

3 Choose the variable that maximizes the number of new computed
variables as a tearing variable and e as iteration equation.

59 / 75

Simple heuristic on the example

c : u3 = R3i3

d : u1 = u0 − u3

a : i1 = 1/R1 u1

e : u2 = u3

b : i2 = 1/R2 u2

f : i1 − i2 − i3 = 0

Equation with most variables is f with variables (i1, i2, and i3.
Assume known:

i1: u1 (1 variable)

i2: u2, u3, i3, i1, u1 (5 variables)

i3: u3, u1, i1, i2, u2 (5 variables)

Conclusion: Choose i2 or i3 as tearing variable.

60 / 75

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

61 / 75

Event/crossing functions

Here it is clear that the zero-crossing is very important for the ball
not to fall through the floor

Important in many simulation problems that certain bounds not are
crossed

62 / 75

Event/crossing functions

Modelica

class BouncingBall

constant Real g=10

parameter Real c=0.9, radius=0.1

Real y(start=1), velocity(start=0), x(start=1)

equation

der(x)=0;

der(y) = velocity;

der(velocity)=-g;

when height<=radius then

reinit(velocity,-c*pre(velocity))

end when;

end BouncingBall;

63 / 75

Automatic generation of event functions

if-expression

y = if x>z then a else b;

if-equation

if x>z then

y=a

else

y=b

end if;

Conditional expressions are translated into if-equations

direct to generate event functions. In the example above we get

ci (vars) = x − z

Here it is clear that the modelling can help the compiler to, by itself,
figure out important conditions that has to be monitored.

64 / 75

Event/crossing functions

Start

Find consistent

initial values

Check

Event conditions

Any

Events?

Solve continious DAE

and advance time until

event or end time

Fire event and

solve for consistent

initial/restart values

End

Time?

End

Fits well into the framework of DASSL and other standard solvers are
structured

65 / 75

Zeno effect

You may run into problems of the solution has infinitely many event
detections

Is sufficient that they are dense enough with respect to the numerical
precision for this to be a problem

For the bouncing ball, this of course happens after a while

No general solution, logic has to be built into the model to handle the
case where the ball starts to roll rather than bounce.

66 / 75

Conclusion

Steps I have not yet addressed concerns the
Analyzer/Optimizer steps

Earlier discussion has assumed an ODE (or low
index) form

Remains to:

compute index

reduce index

determine consistent initial conditions

Common, and general, solution to the above
three problems has a lot in common and will be
the main theme for next lecture.

67 / 75

Reduce to ODE or DAE with index 1?

Standard solvers can handle fully implicit idex 1 DAE models, why?

well written code, efficient
is it really the best?

Implicit solvers not efficient for non-stiff problems

Large model often exhibits stiff dynamics

Dymola/Openmodelica reduces model to ODE (as far as I know), is
not DAE index 1 sufficient?

”Cellier vs. Petzold”

68 / 75

Outline

An overview of a solver

Adjoint sensitivity analysis of DAEs

Modelica
Snapshot of the language
Simulation of Modelica models
Algebraic and dynamical loops/tearing
Event functions

Structural index - introduction and definition

69 / 75

Structural index

An important step in the procedure to transfer the model to C code is to
perform index reduction. Index reduction requires that you know the index
of the model. As we know it is a difficult problem in general to determine
index; a method based on model structure is typically used.

Structural index can be defined in many ways. One way, for the DAE

Aẋ + Bx = 0

the structural index is the real index the DAE has for almost all A and B
with the same structure.

simple to generalize to non-linear systems

can be computed with Pantelides algorithm, which will be used also
for other purposes

70 / 75

Structural index - introductory example
Let x = (x1, x2) ∈ R2 and consider the index 1 model

ẋ1 = x1 + x2 + u

0 = −2x1 + x2

ẋ1 x2
e1 X X
e2 X

The highest differentiated variables are xhd = (ẋ1, x2)

DAE has index 1 for almost all coefficients in front of the x variables, only
when coefficients in front of ẋ1 in e1 or x2 in e2 is 0 we have a problem.

Conclusions: we can from the table on the right determine that this model
has (structural-)index 1.

F (ẋ1, x1, x2) = 0

has low index (locally) if

∂F (ẋ1, x1, x2)

∂xhd

∣∣∣∣
ẋ1=x

′,∗
1 ,x1=x∗1 ,x2=x∗2

has full rank
71 / 75

Structural index - introductory example

Let x = (x1, x2, x3) ∈ R3

ẋ1 = x1 + x2 + x3 + u

0 = −2x1 + x2

0 = x1 + x2 + u

ẋ1 x2 x3
e1 X X X
e2 X
e3 X

From the table on the right we see that regardless of which coefficient we
have for the variables, the DAE has index > 1. The DAE has a unique
solution since

|λE − A| = λ+ 3 ̸= 0, (x1, x2, x3) = (−1

3
u,−2

3
u,−1

3
u̇)

Turns out you can determine structural index only by looking at the tables
on the right. This is also direct to automatically do for large scale models
in general purpose simulation environments.

72 / 75

Structural index

Let ν and νstr be the index and the structural index respectively for

F (t, y ′, y) = 0

What holds?

ν < νstr , ν ≤ νstr

νstr < ν, νstr ≤ ν

What is the consequence of this for a method that relies on a structural
algorithm for index reduction?

73 / 75

An annoying example

Consider the linear DAE
0 1 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0

 ẋ + x = 0

This DAE can be shown to have index 1 but structural index larger than 1
(exercise, what is the structural index?)

Well known that structural index can be less than the index, but the
example above shows that it can also be the other way around.

74 / 75

Lecture 3

Simulation of differential-algebraic equations

Erik Frisk
erik.frisk@liu.se

Department of Electrical Engineering
Linköping University

February 23, 2022

75 / 75

	An overview of a solver
	Adjoint sensitivity analysis of DAEs
	Modelica
	Snapshot of the language
	Simulation of Modelica models
	Algebraic and dynamical loops/tearing
	Event functions

	Structural index - introduction and definition

