Outline

Vehicle Propulsion Systems Lecture 1

Course Introduction & Energy System Overview

Lars Eriksson Associate Professor (Docent)

> Vehicular Systems Linköping University

October 25, 2011

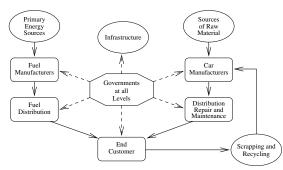
2 / 35

Vehicle Propulsion Systems

Vehicles as a hot topic is everlasting

- Brings freedom to the user
- Have a direct influence on the environment
- Consume resources that are limited
- Have different appeal to different persons

4 / 35


Top Priorities in Vehicle Development

- Improve the fuel economy of vehicles (Better cars are our best oil-wells)
- Reduce costs
- Drivability
- Safety
- Emissions
 - Exhaust emissions
 - Road dust
 - Noise
 - Legislations

All issues are important but the first item is the main topic here.

6 / 35

Life Cycle of a Vehicle

Many things are important! -Focus is on energy path and in-vehicle energy conversion

About the Course

More Course Details

Analyzing Energy Demand for a Vehicle

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

3 / 35

Vehicle Propulsion Systems

A diversity of powertrain configurations is appearing

- Conventional Internal Combustion Engine (ICE) powertrain. Diesel, Gasoline, New concepts
- Hybrid powertrains Parallel/Series/Complex configurations
- ► Fuel cell electric vehicles
- Electric vehicles

Course goal:

- Introduction to powertrain configuration and optimization problems
- Mathematical models and ...
- ... methods for
 - Analyzing powertrain performance
 - Optimizing the powertrain energy consumption

5/35

Vehicle properties

The vehicle in focus is passenger cars. (In the book.) -What characterizes passenger cars?

- Autonomous and do not depend on fixed power grid.
- Have refueling time negligible compared to the driving time between two refuelings.
- Transport two to six persons and some payload.
- Accelerate from 0 to 100 km/h in 10-15 seconds, or drive uphill a 5% ramp at legal top speed.

Methods and tools are also applicable to trucks and other transportation systems.

- Some numerical values differ
- Demands can be different
- Principles the same but some solutions differ

7 / 35

Outline

About the Course

More Course Details

Analyzing Energy Demand for a Vehicle

Energy Consumption of a Driving Missior The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Examination - 4 Hand-In Assignments

Hand-In assignments done individually.

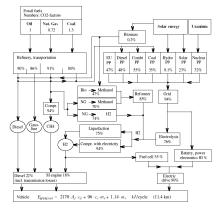
- Compendium for Hand-In assignments.
- 1. Fuel consumption requirement of a driving mission. Methods and tools for estimating the fuel consumption. -Mandatory and optional tasks.
- 2. Optimal control of series and hybrid concepts. Tools for investigating the best possible driving schedule. -Mandatory and optional tasks.
- 3. Three concepts for short term energy storage. Very open ended problems.
- -Mandatory to investigate one concept. 4. Fuel cell vehicle.
 - -Optional tasks.

10/35

Resources

- Computer tools are necessary, to be able to solve interesting problems.
 - -Matlab and Simulink with extra packages.
- If you have your own computer, we encourage you to use it.
- 1 computer room booked on 2 occasions per week Mon 17-21, Wed 13-17.
- See it as support opportunity.
 - Lab room assistant, answers questions.
 - Collect your questions and come to us.

Preparations for hand-in - Refresh your knowledge Matlab and Simulink programming experience.


12/35

Outline

Analyzing Energy Demand for a Vehicle

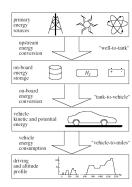
14/35

Example of Some Energy Paths – W2M

Examination - Grading system

- 1. Pass Grade 3. All mandatory tasks must be completed. Handed in, examined, returned (corrected, handed in again, until pass).
- 2. Higher grades. Handed in, graded by us (like an exam), returned. Point system connected to extra tasks.
 - ► Grade 3 0-6 p

 - Grade 4 7-? p
 Grade 5 12-? p (+ demand on 2 points on truck or fuel cell)
- 3. More details are found in the compendium. Deadlines given on the home page.


11/35

13/35

Course Outline

Let's have a look on the course home page!

Energy System Overview

Primary sources

Different options for onboard energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

15 / 35

Outline

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy Consumption of a Driving Mission

► How large force is required at the wheels for driving the

Remember the partitioning

-Cut at the wheels.

vehicle on a mission?

Repetition - Work, power and Newton's law

Translational system - Force, work and power:

$$W = \int F \, dx, \qquad P = \frac{d}{dt}W = F \, v$$

Rotating system – Torque (T = F r), work and power:

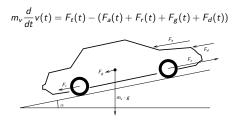
$$W = \int T \, d\theta, \qquad P = T \, \omega$$

Newton's second law:

18/35

20/35

22/35

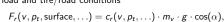

v > 0

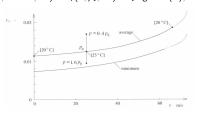
$$\begin{tabular}{c|c|c|c|c|c|} \hline Translational & Rotational \\ \hline \hline m \frac{dv}{dt} = F_{driv} - F_{load} & J \frac{d\omega}{dt} = T_{driv} - T_{load} \\ \hline \end{tabular}$$

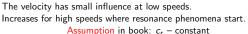
19 / 35

The Vehicle Motion Equation

Newton's second law for a vehicle

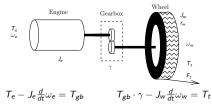



► *F_t* - tractive force


- ► F_a aerodynamic drag force
- F_r rolling resistance force
- F_g gravitational force
- F_d disturbance force

Rolling Resistance Losses

Rolling resistance depends on: load and tire/road conditions



$$F_r = c_r \cdot m_v \cdot g$$

Inertial forces - Reducing the Tractive Force

 $\label{eq:Variable substitution: } \mathsf{T}_{w} = \gamma \ \mathsf{T}_{e}, \qquad \omega_{w} \ \gamma = \omega_{e}, \qquad \mathsf{v} = \omega_{w} \ \mathsf{r}_{w}$

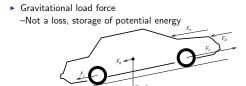
Tractive force:

$$F_{t} = \frac{1}{r_{w}} \left[\left(T_{e} - J_{e} \frac{d}{dt} \frac{v(t)}{r_{w}} \gamma \right) \cdot \gamma - J_{w} \frac{d}{dt} \frac{v(t)}{r_{w}} \right] = \frac{\gamma}{r_{w}} T_{e} - \left(\frac{\gamma^{2}}{r_{w}^{2}} J_{e} + \frac{1}{r_{w}^{2}} J_{w} \right) \frac{d}{dt} v(t)$$

The Vehicle Motion Equation: $\begin{bmatrix} m_v + \frac{2}{r_w^2} J_e + \frac{1}{r_w^2} J_w \end{bmatrix} \frac{d}{dt} v(t) = \frac{2}{r_w} T_e - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$

Aerodynamic Drag Force - Loss

Aerodynamic drag force depends on: Frontal area A_f , drag coefficient c_d , air density ρ_a and vehicle velocity v(t)


$$F_a(t) = rac{1}{2} \cdot
ho_a \cdot A_f \cdot c_d \cdot v(t)^2$$

Approximate contributions to F_a

- ► 65% car body.
- ► 20% wheel housings.
- ▶ 10% exterior mirrors, eave gutters, window housings, antennas, etc.
- ▶ 5% engine ventilation.

21/35

Gravitational Force

Up- and down-hill driving produces forces.

 $F_g = m_v g \sin(\alpha)$

Flat road assumed $\alpha = 0$ if nothing else is stated (In the book).

23 / 35

Vehicle Operating Modes

The Vehicle Motion Equation:

$$m_v \frac{d}{dt} v(t) = F_t(t) - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$$

- $F_t > 0$ traction
- $F_t < 0$ braking
- $F_t = 0$ coasting

$$\frac{d}{dt}v(t) = -\frac{1}{2m_v}\rho_a A_f c_d v^2(t) - g c_r = \alpha^2 v^2(t) - \beta^2$$

Coasting solution for v > 0

$$v(t) = \frac{\beta}{\alpha} \tan\left(\arctan\left(\frac{\alpha}{\beta} v(0)\right) - \alpha \beta t\right)$$

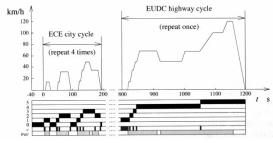
How to check a profile for traction?

The Vehicle Motion Equation:

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$
(1)

- Traction conditions:
- $F_t > 0$ traction, $F_t < 0$ braking, $F_t = 0$ coasting
- Method 1: Compare the profile with the coasting solution over a time step

$$v_{coast}(t_{i+1}) = rac{eta}{lpha} \tan\left(\arctan\left(rac{lpha}{eta} v(t_i)
ight) - lpha eta(t_{i+1} - t_i)
ight)$$


• Method 2: Solve (1) for F_t

$$F_{t}(t) = m_{v} \frac{d}{dt} v(t) + (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

Numerically differentiate the profile v(t) to get $\frac{d}{dt}v(t)$. Compare with Traction condition.

26 / 35

Driving profiles – Another example

Velocity profile, European MVEG-95 (ECE*4, EUDC)

No coasting in this driving profile.

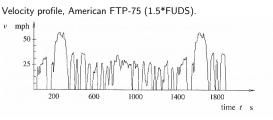
28 / 35

Evaluating the integral

Discretized velocity profile used to evaluate

$$ar{F}_{trac} = rac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

here $v_i = v(t_i)$, $t = i \cdot h$, i = 1, ..., n. Approximating the quantites


$$ar{v}_i(t)pprox rac{v_i+v_{i-1}}{2}, \qquad t\in[t_{i-1},t_i) \ ar{a}_i(t)pprox rac{v_i-v_{i-1}}{h}, \qquad t\in[t_{i-1},t_i) \$$

Traction approximation

$$\bar{F}_{trac} \approx rac{1}{x_{tot}} \sum_{i \in trac} \bar{F}_{trac,i} \, \bar{v}_i \, h$$

30 / 35

Driving profiles

Driving profiles in general

- First used for pollutant control now also for fuel cons.
- Important that all use the same cycle when comparing.
- Different cycles have different energy demands.

27 / 35

Mechanical Energy Demand of a Cycle

$\ensuremath{\textbf{Only}}$ the demand from the cycle

► The mean tractive force during a cycle

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_0^{x_{tot}} \max(F(x), 0) \, dx = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

- where $x_{tot} = \int_0^{t_{max}} v(t) dt$.
- Note $t \in trac$ in definition.
- Only traction.
- Idling not a demand from the cycle.

29 / 35

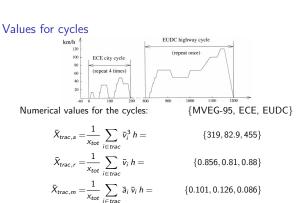
Evaluating the integral

Tractive force from The Vehicle Motion Equation

$$F_{trac} = \frac{1}{2} \rho_a A_f c_d v^2(t) + m_v g c_r + m_v a(t)$$
$$\bar{F}_{trac} = \bar{F}_{trac,a} + \bar{F}_{trac,r} + \bar{F}_{trac,m}$$

Resulting in these sums

$$\begin{split} \bar{F}_{trac,a} &= \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i \in trac} \bar{v}_i^3 h \\ \bar{F}_{trac,r} &= \frac{1}{x_{tot}} m_v g c_r \sum_{i \in trac} \bar{v}_i h \\ \bar{F}_{trac,m} &= \frac{1}{x_{tot}} m_v \sum_{i \in trac} \bar{a}_i \bar{v}_i h \end{split}$$


31 / 35

Approximate car data

$\bar{E}_{\text{MVEG-95}} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10$ kJ/100 km

	SUV	full-size	compact	light-weight	PAC-Car II
$A_f \cdot c_d$	1.2 m ²	0.7 m ²	0.6 m ²	0.4 m ²	.25 · .07 m ²
C _r	0.017	0.017	0.017	0.017	0.0008
m _v	2000 kg	1500 kg	1000 kg	750 kg	39 kg
P _{MVEG-95}	11.3 kW	7.1 kW	5.0 kW	3.2 kW	
\bar{P}_{max}	155 kW	115 kW	77 kW	57 kW	

Average and maximum power requirement for the cycle.

 $\bar{E}_{MVEG-95} \approx A_f c_d \, 1.9 \cdot 10^4 + m_v c_r \, 8.4 \cdot 10^2 + m_v \, 10$ kJ/100 kmTasks in Hand-in assignment

Energy System Overview

primary energy sources	Å	¥	
upstream energy conversion		L	"well-to-tank
on-board energy storage	9	(H2)	+ .
on-board energy conversion	$\overline{}$	"	nk-to-vehicle
vehicle kinetic and poter energy	ntial {		$\overline{\mathcal{O}}$
vehicle energy consumption	$\overline{}$		hicle-to-mile
driving and altitude profile	ы. s	<u>а. С</u>	<u>~1</u>

Primary sources

Different options for onboard energy storage Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

34 / 35