Vehicle Propulsion Systems Lecture 4 Hybrid Powertrains Part 2 Component Modeling

Lars Eriksson Associate Professor (Docent)

Vehicular Systems Linköping University

October 30, 2011

Outline

Repetition

Energy consumption for cycles

 $\bar{E}_{MVEG-95} \approx A_f c_d \, 1.9 \cdot 10^4 + m_v c_r \, 8.4 \cdot 10^2 + m_v \, 10 \qquad kJ/100 \, km$

Engine Efficiency Maps

Measured engine efficiency map - Used very often

-Willans line approximation.

Hybrid operating modes

Example: Combined hybrid in power assist mode.

7/39

Electric Motors - Classification

Electric motors are often classified into four groups (there are other classifications)

- DC-Machines
- Synchronous machines (sometimes including brushless DC-motor)
- Asynchronous machines
- Reluctance machines

There are also other devices: Stepper motors (Digitally controlled Synchronous Machine), Ultrasonic motors.

Hybrid concepts

Electric

Parallel

Series Parallel S/A Combined

6/39

4/39

2/39

Outline

Electric motors, Generators

The 4 Quadrants

10/39

Brushed DC-Machine

Brushless DC-Motor

- Replace electromagnet in rotor with permanent magnet.
- Rotate field in stator.
- DC-motor is misleading
 - DC source as input
 Electronically controlled commutation system AC
- Linear relations between
 - current and torquevoltage and rpm
 - voltage and rpm

13/39

Torque Characteristics

15/39

DC-motor torque characteristics

Characteristics of a separately excited DC-motor

12/39

Synchronous AC machines

- AC machine
- Rotor follows the rotation of the magnetic field
- Has often *permanent magnets* in rotor
 This is the same as the brushless DC motor.

14/39

Asynchronous AC machines - Induction motors

- Stator has a rotating magnetic fiels
- Rotor has a set of windings, squirrel cage -See separate animation.
- Electric field induces a current in the windings
- Torque production depends on slip.

Torque Characteristics

-Induction AC motor

Reluctance machines

- Reluctance = Magnetic resistance.
 - Synchronous machine
 - Rotating field
 - Magnetic material in the rotor
 - Rotor tries to minimize the reluctance

18/39

First quadrant maps for η_m – AC machines

PM Synchronous

Induction motor, Asynchronous AC

20/39

Two Quadrant Maps for η_m

Mirroring efficiency is not always sufficient.

22/39

Electrical Machines in Hybrids

Machines encountered

- Separately excited DC
- Permanent magnet synchronous DC
- Induction motors
- (Switched reluctance machines) –Considered to be interesting

AC motors (compared to DC motors)

Less expensive but more sophisticated control electronics, gives higher overall cost.

Higher power density, higher efficiency.

AC motors (permanent magnet vs induction motors) Averaged values from Advisor database.

/ nonagoa raiaoo nom	a la liber a la la bababa		
	Efficiency	Power density	
permanent magnet	92.5%	0.66 kW/kg	
induction motors	90.5%	0.76 kW/kg	

Motor - Modeling

Quasistatic (equations are general) Power relationships: –input power P₁(t)

- -delivered power $P_2(t) = T_2(t) \omega_2(t)$
- Efficiency usage

$$P_1(t) = P_2(t)/\eta_m(\omega_2(t), T_2), \qquad P_2(t) > 0$$

$$P_1(t) = P_2(t) \cdot \eta_m(\omega_2(t), -T_2), \qquad P_2(t) < 0$$

- Description of the efficiency in look-up tables
- Willans line to capture low power performance

19/39

Extending the Maps for η_m

- ► Traditional first quadrant drive is normally well documented –Supplier information for $\eta_m(\cdots)$
- Electric motor drive

$$P_2(t) = \eta_m(\omega_2(t), T_2) \cdot P_1(t), \qquad P_2(t) > 0$$

Electric generator load

$$P_1(t) = \eta_g(\omega_2(t), T_2) \cdot P_2(t), \qquad P_2(t) < 0$$

- ► How to determine η_g?
- Method 1: Mirror the efficiency map

$$\eta_m(\omega_2(t), -T_2) = \eta_g(\omega_2(t), T_2)$$

- Method 2: Calculate the power losses and mirror them
- Method 3: Willans approach

21/39

Motor – Modeling

- More advanced models
 - Use component knowledge: Inductance, resistance
 Build physical models
- Dynamic models are developed in the book.

23/39

Outline

Repetition

Electric motors, Generator

Batteries, Super Capacitors

Power Links

Torque Couplers

Power Split Devices

- Energy storage devices Energy density important
- Performance Power density important
- Durability

	Energy	Power	cycles
Battery type	Wh/kg	W/kg	
Lead-acid	40	180	600
Nickel-cadmium	50	120	1500
Nickel-metal hydride	70	200	1000
Lithium-ion	130	430	1200

26/39

Standard model

28/39

Battery - Efficiency definition

- Efficiency definition is problematic
 - Not an energy converter
 - Energy storage Peukert test

 - -Constant current during charge and discharge. Ragone test
 - -Constant power during charge and discharge.
- Efficiency will depend on the cycle.

$$E_{d} = \int_{0}^{t_{f}} P_{2}(t)dt = /\text{Peukert test...} / = t_{f}(U_{oc} - R_{i} \cdot l_{2}) \cdot l_{2}$$
$$|E_{c}| = \int_{0}^{t_{f}} |P_{2}(t)|dt = /\text{Peukert test...} / = t_{f}(U_{oc} + R_{i} \cdot |l_{2}|) \cdot |l_{2}|$$
$$\eta_{b} = \frac{E_{d}}{E_{c}}$$

Can also define an instantaneous efficiency.

30/39

Supercapacitors

- Supercapacitors and ultracapacitors
- High power density -Used as short time scale energy buffer. -Load leveling to the battery.
- Very similar to battery in modeling Exchange the battery for a capacitor in the circuit below.

 Efficiency definitions Peukert and Ragone Modeling in QSS Framework

27/39

Voltage and SOC

29/39

Efficiency definition - Instantaneous

31/39

Outline

Power Links

- Electrical glue components
 - DC-DC converters
 DC-AC converter
- Account for power losses

Components that are included to:

Gears in the coupling equationSub models for friction losses

Glue for mechanical systems acting on the same shaft

-Torque (from a power balance, including losses)

Outline

Torque Couplers

35/39

Outline

Power Split Devices

36/39

34/39

Power Split Devices

Torque couplers

Can include:

 Basic equations -Angular velocities

- Manage power splits between different components
- Important component for achieving flexibility
- Modeling approach: Speed relations with torque from power balance.

Can add more planetary gears

38/39