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Energy consumption for cycles

Numerical values for MVEG-95, ECE, EUDC

air drag =
1

xtot

∑
i∈trac

v̄3
i h = {319,82.9,455}

rolling resistance =
1

xtot

∑
i∈trac

v̄i h = {.856,0.81,0.88}

kinetic energy =
1

xtot

∑
i∈trac

āi v̄i h = {0.101,0.126,0.086}

ĒMVEG-95 ≈ Af cd 1.9 ·104 +mv cr 8.4 ·102 +mv 10 kJ/100km
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Hybrid Electrical Vehicles – Serial

I Two paths working in parallel
I Decoupled through the battery
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Hybrid Electrical Vehicles – Parallel

I Two parallel energy paths

5 / 31

Component modeling
I Model energy (power) transfer and losses
I Using maps η = f (T , ω)
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I Using parameterized (scalable) models
–Willans approach
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Model implemented in QSS

Conventional powertrain

Efficient computations are important
–For example if we want to do optimization and sensitivity
studies.
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Problem motivation
What gear ratios give the lowest fuel consumption for a given
drivingcycle?
–Problem presented in appendix 8.1

Problem characteristics
I Countable number of free variables, ig,j , j ∈ [1,5]
I A “computable” cost, mf (· · · )
I A “computable” set of constraints, model and cycle
I The formulated problem

min
ig,j , j∈[1,5]

mf (ig,1, ig,2, ig,3, ig,4, ig,5)

s.t. model and cycle is fulfilled

I When the problem is formulated
–Select and apply a solver.
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Optimization – Linear Programming

I Linear problem
min

x
cT x

s.t. A x = b
x ≥ 0

I Convex problem
I Much analyzed: existence, uniqueness, sensitivity
I Many algorithms: Simplex the most famous

I About the word Programming
–The solution to a problem was called a program
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Optimization – Non-Linear Programming

I Non-linear problem

min
x

f (x)

s.t. g(x) = 0
x ≥ 0

I For convex problems
–Much analyzed: existence, uniqueness, sensitivity
–Many algorithms

I For non-convex problems
–Some special problems have solutions
–Local optimum is not necessarily a global optimum
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Mixed Integer and Combinatorial Optimziation

I Problem
min

x
f (x , y)

s.t. g(x , y) = 0
x ≥ 0
y ∈ Z+

I Inherently non-convex y
Generally hard problems to solve.

I Much analyzed
–Existence, uniqueness, sensitivity
–Many types of problems
–Many different algorithms

12 / 31

Some comments on problem solver

I Find the “right” problem formulation
I Use the right solver for the problem
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Optimal Control – Problem Motivation
Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel
consumption?

I Infinite dimensional decision variable u(t).
I Cost function

∫ tf
0 ṁf (t)dt

I Constraints:
I Model of the car (the vehicle motion equation)

mv
d
dt v(t) = Ft (v(t),u(t)) −(Fa(v(t)) + Fr (v(t)) + Fg(x(t)))

d
dt x(t) = v(t)

ṁf = f (v(t),u(t))

I Starting point x(0) = A
I End point x(tf ) = B
I Speed limits v(t) ≤ g(x(t))
I Limited control action 0 ≤ u(t) ≤ 1

I In general difficult (impossible) problem to solve
analytically.
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General problem formulation

I Performance index

J(u) = φ(x(tb), tb) +

∫ tb

ta
L(x(t),u(t), t)dt

I System model (constraints)

d
dt

x = f (x(t),u(t), t), x(ta) = xa

I State and control constraints

u(t) ∈ U(t)

x(t) ∈ X (t)
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Optimal Control – Historical Perspective

I Old subject
I Rich theory

I Old theory from calculus of variations
I Much theory and many methods were developed during

50’s-70’s
I Theory and methods are still being actively developed

I Dynamic programming, Richard Bellman, 50’s.
I A modern success story:

–Model predictive control (MPC)
I Now a new interest for collocation methods:

–A few during 1990’s
–Much interest 2000–

17 / 31

Outline

Repetition

“Traditional” Optimization
Problem motivation
Different Classes of Problems

Optimal Control
Problem Motivation

Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation – Two Implementation Alternatives
The Provided Tools

Case Studies
Energy Management of a Parallel Hybrid

18 / 31

Dynamic programming – Problem Formulation
I Optimal control problem

min J(u) = φ(x(tb), tb) +

∫ tb

ta
L(x(t),u(t), t)dt

s.t .
d
dt

x = f (x(t),u(t), t)

x(ta) = xa

u(t) ∈ U(t)
x(t) ∈ X (t)

I x(t), u(t) functions on t ∈ [ta, tb]
I Search an approximation to the solution by discretizing

I the state space x(t)
I and maybe the control signal u(t)

in both amplitude and time.
I The result is a combinatorial (network) problem
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Dynamic Programming (DP) – Problem Formulation
I Find the optimal control sequence
π0(x0) = {u0,u1, . . . ,uN−1} minimizing:

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk ,wk )

I subject to:

xk+1 = fk (xk ,uk ,wk )

x0 = x(t = 0)

xk ∈ Xk

uk ∈ Uk

I Disturbance wk

I Stochastic vs deterministic DP
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Deterministic Dynamic Programming – Basic algorithm

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk )

xk+1 = fk (xk ,uk )

Algorithm idea:
Start at the end and proceed backward in time to evaluate the
optimal cost-to-go and the corresponding control signal.

0 1 2 t

x

k =

ta tb

N − 1 N
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Deterministic Dynamic Programming – Basic algorithm

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk )

xk+1 = fk (xk ,uk )

Algorithm:

1. Set k = N, and assign final cost JN(xN) = gN(xN)

2. Set k = k − 1
3. For all points in the state-space grid, find the optimal cost

to go

Jk (xk ) = min
uk∈Uk (xk )

gk (xk ,uk ) + Jk+1(fk (xk ,uk ))

4. If k = 0 then return solution
5. Go to step 2
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Deterministic Dynamic Programming – Basic
Algorithm

Graphical illustration of the solution procedure
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Arc Cost Calculations

There are two ways for calculating the arc costs
I Calculate the exact control signal and cost for each arc.

–Quasi-static approach
I Make a grid over the control signal and interpolate the cost

for each arc.
–Forward calculation approach

Matlab implementation – it is important to utilize matrix
calculations

I Calculate the whole bundle of arcs in one step
I Add boundary and constraint checks
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Pros and Cons with Dynamic Programming

Pros
I Globally optimal, for all initial conditions
I Can handle nonlinearities and constraints
I Time complexity grows linearly with horizon
I Use output and solution as reference for comparison

Cons
I Non causal
I Time complexity grows “exponentially” with number of

states
I Only open loop scheme
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Calculation Example

I Problem 200s with discretization ∆t = 1s.
I Control signal discretized with 10 points.
I Statespace discretized with 1000 points.
I One evaluation of the model takes 1µs
I Solution time:

I Brute force:
Evaluate all possible combinations of control sequences.
Number of evaluations, 10200 gives ≈ 3 · 10186 years.

I Dynamic programming:
Number of evaluations: 200 · 10 · 1000 gives 2 s.

This example comes from ETH slides
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The Provided Tools for Hand-in Assignment 2

Task:
Investigate optimal control of one parallel and one series hybrid
configuration in different driving profiles.

I Some Matlab-functions provided
I Skeleton file for defining the problems
I 2 DDP solvers, 1-dim and 2-dim.
I 2 skeleton files for calculating the arc costs for parallel and

serial hybrids
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Parallel Hybrid Example

I Fuel-optimal torque split factor u(SOC, t) = Te−motor
Tgearbox

I ECE cycle
I Constraints SOC(t = tf ) ≥ 0.6, SOC ∈ [0.5,0.7]
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Parallel Hybrid Example

I Fuel-optimal torque split factor u(SOC, t) = Te−motor
Tgearbox

I NEDC cycle
I Constraints SOC(t = tf ) = 0.6, SOC ∈ [0.5,0.7]
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