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Hybrid Electrical Vehicles — Parallel
» Two parallel energy paths
gl =
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Model implemented in QSS

Conventional powertrain
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Efficient computations are important
—For example if we want to do optimization and sensitivity
studies.
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Repetition

Hybrid Electrical Vehicles — Serial

» Two paths working in parallel
» Decoupled through the battery

Component modeling
» Model energy (power) transfer and losses
» Using maps n = f(T,w)
Electric motor map

» Using parameterized (scalable) models
—Willans approach
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“Traditional” Optimization
Problem motivation
Different Classes of Problems




Problem motivation
What gear ratios give the lowest fuel consumption for a given
drivingcycle?
—Problem presented in appendix 8.1
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Problem characteristics
Countable number of free variables, iy, j € [1,5]
A “computable” cost, my(---)

A “computable” set of constraints, model and cycle
The formulated problem
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s.t. model and cycle is fulfilled

Optimization — Non-Linear Programming

» Non-linear problem

mXin f(x)
st. gx) = 0
x >0

» For convex problems
—Much analyzed: existence, uniqueness, sensitivity
—Many algorithms
» For non-convex problems
—Some special problems have solutions
—Local optimum is not necessarily a global optimum
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Some comments on problem solver

» Find the “right” problem formulation
» Use the right solver for the problem
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Optimal Control — Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel
consumption?

» Infinite dimensional decision variable u(t).

» Cost function f0” me(t)at

» Constraints:

» Model of the car (the vehicle motion equation)

mygv(t) = F(v(t),u(t)) —(Fa(v(t))+ F(v(t)+ Fg(x(1))
ax(t = V(1)
my = f(v(t), u(t))

» Starting point x(0) = A
» End point x(t) = B
» Speed limits v(t) < g(x(t))
> Limited control action 0 < u(t) < 1
» In general difficult (impossible) problem to solve
analytically.
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Optimization — Linear Programming

v

Linear problem

min ¢’ x

X

st. Ax = b
x >0

v

Convex problem

v

Much analyzed: existence, uniqueness, sensitivity
Many algorithms: Simplex the most famous

v

v

About the word Programming
—The solution to a problem was called a program

Mixed Integer and Combinatorial Optimziation

» Problem
mxin f(x,y)
st gx,y) = 0
X > 0
y e Zt

» Inherently non-convex y
Generally hard problems to solve.
» Much analyzed
—Existence, uniqueness, sensitivity
—Many types of problems
—Many different algorithms
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Optimal Control
Problem Motivation

General problem formulation

» Performance index
tp
(W) = olx(to) 1) + [ LOx(O), (). et
ta
» System model (constraints)

gtx — F(x(1), u(t), 1), X(ta) = Xa

» State and control constraints
u(t) € U(¢)

x(t) € X(1)
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Optimal Control — Historical Perspective

» Old subject
» Rich theory
» Old theory from calculus of variations
» Much theory and many methods were developed during
50's-70’s
» Theory and methods are still being actively developed
Dynamic programming, Richard Bellman, 50’s.

» A modern success story:
—Model predictive control (MPC)

» Now a new interest for collocation methods:
—A few during 1990’s
—Much interest 2000—

v

Dynamic programming — Problem Formulation

» Optimal control problem

min J(u) = G(x(t), to) + /[” L(x(t), u(t), t)dt
Jia

s.t. %x = f(x(t), u(t),t)

X(ta) = Xa
u(t) € U(t)
x(t) € X(t)

> x(t), u(t) functions on t € [ta, tp]
» Search an approximation to the solution by discretizing

> the state space x(f)
» and maybe the control signal u(t)

in both amplitude and time.
» The result is a combinatorial (network) problem
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Deterministic Dynamic Programming — Basic algorithm

N—1

J(x0) = gn(XN) + Y Gk(Xk, U)
k=0

Xk = (X, Uk)

Algorithm idea:
Start at the end and proceed backward in time to evaluate the
optimal cost-to-go and the corresponding control signal.
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Deterministic Dynamic Programming — Basic
Algorithm

Graphical illustration of the solution procedure
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Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation — Two Implementation Alternatives
The Provided Tools
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Dynamic Programming (DP) — Problem Formulation

» Find the optimal control sequence

7%(x0) = {uo, U1, . .., Uy_1} minimizing:
N-1
J(x0) = ON(XN) + D Gr(Xk, Uk, W)
k=0

» subject to:

Xk1 = Fie(Xic, Ui, Wi)
Xo = x(t=0)
Xk € Xk
Uk € Uk

» Disturbance wy
» Stochastic vs deterministic DP
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Deterministic Dynamic Programming — Basic algorithm

N—1

J(x0) = OnOXN) + Y G (XK, UK)
k=0

X1 = Fie(Xic, Uk)
Algorithm:
1. Set k = N, and assign final cost Jy(xn) = gn(Xn)

2. Setk=k—-1

3. For all points in the state-space grid, find the optimal cost
to go

Jk(xk) = min - g(Xk, Ux) + Jk1 (Fe(Xk, Uk))
uk€ Uk (%)

4. If k = 0 then return solution
5. Go to step 2

Arc Cost Calculations

There are two ways for calculating the arc costs

» Calculate the exact control signal and cost for each arc.
—Quasi-static approach

» Make a grid over the control signal and interpolate the cost
for each arc.
—Forward calculation approach

Matlab implementation — it is important to utilize matrix
calculations

» Calculate the whole bundle of arcs in one step
» Add boundary and constraint checks



Pros and Cons with Dynamic Programming

Pros

» Globally optimal, for all initial conditions

» Can handle nonlinearities and constraints

» Time complexity grows linearly with horizon

» Use output and solution as reference for comparison
Cons

» Non causal

» Time complexity grows “exponentially” with number of
states

» Only open loop scheme
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The Provided Tools for Hand-in Assignment 2

Task:
Investigate optimal control of one parallel and one series hybrid
configuration in different driving profiles.
» Some Matlab-functions provided
» Skeleton file for defining the problems
» 2 DDP solvers, 1-dim and 2-dim.
» 2 skeleton files for calculating the arc costs for parallel and
serial hybrids
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Parallel Hybrid Example

» Fuel-optimal torque split factor u(SOC, t) = TZS;ZZ’
» ECE cycle
» Constraints SOC(t = t;) > 0.6, SOC € [0.5,0.7]

pure electric
boost
pure thermal

recharging

SoC [, speed scaled [

Tresise
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Calculation Example

v

Problem 200s with discretization At = 1s.
Control signal discretized with 10 points.
Statespace discretized with 1000 points.
One evaluation of the model takes 1us
Solution time:
» Brute force:
Evaluate all possible combinations of control sequences.
Number of evaluations, 10%%° gives ~ 3 - 108 years.
» Dynamic programming:
Number of evaluations: 200 - 10 - 1000 gives 2 s.
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v

v

This example comes from ETH slides
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Case Studies
Energy Management of a Parallel Hybrid
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Parallel Hybrid Example

» Fuel-optimal torque split factor u(SOC, t) = %
» NEDC cycle
» Constraints SOC(t = t) = 0.6, SOC < [0.5,0.7]

n.r pure electric
boost.
pure thermal
recharging
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