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W2M – Energy Paths
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Energy System Overview

Primary sources

Different options for on-
board energy storage

Powertrain energy conver-
sion during driving

Cut at the wheel!

Driving mission has a mini-
mum energy requirement.
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Mechanical Energy Demand of a Cycle

Only the demand from the cycle

I The mean tractive force during a cycle

F̄trac =
1

xtot

∫ xtot

0
max(F (x), 0) dx =

1

xtot

∫
t∈trac

F (t)v(t)dt

where xtot =
∫ tmax

0 v(t)dt.

I Note t ∈ trac in definition.

I Only traction.

I Idling not a demand from the cycle.
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Evaluating the integral

Tractive force from The Vehicle Motion Equation

Ftrac =
1

2
ρa Af cd v 2(t) + mv g cr + mv a(t)

F̄trac = F̄trac,a + F̄trac,r + F̄trac,m

Resulting in these sums

F̄trac,a =
1

xtot

1

2
ρa Af cd

∑
i∈trac

v̄ 3
i h

F̄trac,r =
1

xtot
mv g cr

∑
i∈trac

v̄i h

F̄trac,m =
1

xtot
mv

∑
i∈trac

āi v̄i h
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Values for cycles

Numerical values for the cycles: {MVEG-95, ECE, EUDC}

X̄trac,a =
1

xtot

∑
i∈trac

v̄ 3
i h = {319, 82.9, 455}

X̄trac,r =
1

xtot

∑
i∈trac

v̄i h = {0.856, 0.81, 0.88}

X̄trac,m =
1

xtot

∑
i∈trac

āi v̄i h = {0.101, 0.126, 0.086}

ĒMVEG-95 ≈ Af cd 1.9 · 104 + mv cr 8.4 · 102 + mv 10 kJ/100km

Tasks in Hand-in assignment
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Energy demand again – Recuperation

I Previously: Considered energy demand from the cycle.

I Now: The cycle can give energy to the vehicle.

Recover the vehicle’s kinetic energy during driving.
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Perfect recuperation

I Mean required force
F̄ = F̄a + F̄r

I Sum over all points

F̄a =
1

xtot

1

2
ρa Af cd

N∑
i=1

v̄ 3
i h

F̄r =
1

xtot
mv g cr

N∑
i=1

v̄i h
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Perfect recuperation – Numerical values for cycles

Numerical values for MVEG-95, ECE, EUDC

X̄a =
1

xtot

∑
i

v̄ 3
i h = {363, 100, 515}

X̄r =
1

xtot

∑
i

v̄i h = {1, 1, 1}

ĒMVEG-95 ≈ Af cd 2.2 · 104 + mv cr 9.81 · 102 kJ/100km
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Comparison of numerical values for cycles

I Without recuperation.

X̄trac,a =
1

xtot

∑
i∈trac

v̄ 3
i h = {319, 82.9, 455}

X̄trac,r =
1

xtot

∑
i∈trac

v̄i h = {0.856, 0.81, 0.88}

X̄trac,m =
1

xtot

∑
i∈trac

āi v̄i h = {0.101, 0.126, 0.086}

I With perfect recuperation

X̄a =
1

xtot

∑
i

v̄ 3
i h = {363, 100, 515}

X̄r =
1

xtot

∑
i

v̄i h = {1, 1, 1}
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Perfect and no recuperation

Mean force represented as liter Diesel / 100 km.
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Sensitivity Analysis

I Cycle energy reqirement (no recuperation)

ĒMVEG-95 ≈ Af cd 1.9·104+mv cr 8.4·102+mv 10 kJ/100km

I Sensitivity analysis

Sp = lim
δp→0

[
ĒMVEG-95(p + δp)− ĒMVEG-95(p)

]
/ĒMVEG-95(p)

δp/p

Sp = lim
δp→0

[
ĒMVEG-95(p + δp)− ĒMVEG-95(p)

]
δp

p

ĒMVEG-95(p)

I Vehicle parameters:
I Af cd
I cr
I mv
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Sensitivity Analysis

Vehicle mass is the most important parameter.
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Vehicle mass and fuel consumption
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Realistic Recuperation Devices

18 / 51

Vehicle Mass and Cycle-Avearged Efficiency
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Two Approaches for Powertrain Simulation

I Dynamic simulation (forward simulation)

Driver Engine Transm. WheelCycle Vehicle

–“Normal” system modeling direction
–Requires driver model

I Quasistatic simulation (inverse simulation)

Transm. EngineWheelCycle Vehicle

–”Reverse” system modeling direction
–Follows driving cycle exactly

I Model causality

21 / 51

Dynamic approach

I Drivers input u propagates to the vehicle and the cycle

I Drivers input ⇒ . . .⇒ Driving force ⇒ Losses ⇒ Vehicle
velocity ⇒ Feedback to driver model

I Available tools (= Standard simulation) can deal with
arbitrary powertrain complexity.
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Quasistatic approach

I Backward simulation

I Driving cycle ⇒ Losses ⇒ Driving force ⇒ Wheel torque ⇒
Engine (powertrain) torque ⇒ . . .⇒ Fuel consumtion.

I Available tools are limited with respect to the powertrain
components that they can handle. Considering new tools such
as Modelica opens up new possibilities.

I See also: Efficient Drive Cycle Simulation, Anders Fröberg
and Lars Nielsen (2008) . . .
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Causality and Basic Equations

High level modeling – Inputs and outputs

I Causalities for Engine Models

ICEICE

Dynamic Approach

ωe

Te

Pc

ωe

Te

Pc

Quasistatic Approach

I Engine efficiency

ηe =
ωe Te

Pc

I Enthalpy flow of fuel (Power Ḣfuel = Pc)

Pc = ṁf qLHV
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Engine Efficiency Maps

Measured engine efficiency map – Used very often
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–What to do when map-data isn’t available?
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Engine Geometry Definitions

B

l

Vc

BDC

TDC

L

a

theta

Cylinder, Piston, Connecting rod, Crank
shaft

I Bore, B

I Stroke, S = 2 a

I Number of cylinders z

I Cylinder swept volume, Vd = π B2 S
4

I Engine swept volume, Vd = z π B2 S
4

I Compression ratio rc = Vmax
Vmin

= Vd+Vc
Vc
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Definition of MEP

See whiteboard.
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Normalized Engine Variables

I Mean Piston Speed (Sp = mps = cm):

cm =
ωe S

π

I Mean Effective Pressure (MEP=pme (N = nr · 2)):

pme =
N πTe

Vd

I Used to:
I Compare performance for engines of different size
I Design rules for engine sizing.

At max engine power: cm ≈ 17 m/s, pme ≈ 1e6 Pa (no turbo)
⇒ engine size

I Connection:
Pe = z

π

16
B2 pme cm
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Torque modeling through – Willans Line

I Measurement data: x: pmf y: pme = BMEP
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Torque and fuel connection (λ=1)

I Linear (affine) relationship – Willans line

pme = e(ωe) · pmf − pme,0(ωe)

I Engine efficiency: ηe = pme

pmf
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Engine Efficiency – Map Representation

Willans line parameters: e(ωe) pme,0(ωe)
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Causality and Basic Equations

I Causalities for Gear-Box Models

GB GB

Dynamic Approach

ω1 ω2

T2 T2

ω2ω1

T1 T1

Quasistatic Approach

γ γ

I Power balance – Loss free model

ω1 = γω2, T1 =
T2

γ
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Different Types of Gearboxes

I Manual Gear Box

I Automatic Gear Box, with torque converter

I Automatic Gear Box, with automated clutch

I Automatic Gear Box, with dual clutches (DCT)

I Continuously variable transmission
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Connections of Importance for Gear Ratio Selection

I Vehicle motion equation:

mv
d

dt
v(t) = Ft −

1

2
ρa Af cd v 2(t)−mv g cr −mv g sin(α)

Constant speed d
dt v(t) = 0:

Ft =
1

2
ρa Af cd v 2(t) + mv g cr + mv g sin(α)

I A given speed v will require power Ft v from the powertrain.

I This translates to power at the engine Te ωe .
Changing/selecting gears decouples ωe and v .

I Required tractive force increases with speed.
For a fixed gear ratio there is also an increase in required
engine torque.
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Selection of Gear Ratio

Gear ratio selection connected to the engine map.

Additionally: Also geometric ratio between gears.
ig,1
ig,2
≈ ig,2

ig,3
≈ ig,3

ig,4
≈ ig,4

ig,5
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Selection of Gear Ratio

Optimizing gear ratio for a certain cycle.

I Potential to save fuel.

I Case study 8.1 (we’ll look at it later).
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Gear-box Efficiency

I In traction mode

T2 ωw = egb T1 ωe − P0,gb(ωe), T1 ωe > 0

I In engine braking mode (fuel cut)

T1 ωe = egb T2 ωw − P0,gb(ωe), , T1 ωe < 0
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Clutch and Torque Converter Efficiency

Friction clutch torque:

T1,e(t) = T1,gb(t) = T1(t) ∀t

Action and reaction torque in the clutch, no mass.
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Torque Characteristics of a Friction Clutch

Approximation of the maximum torque in a friction clutch

T1,max = sign(∆ω)
(

Tb − (Tb − Ta) · e−|∆ω|/∆ω0

)
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Main parameters in a Torque Converter

Input torque at the converter:

T1,e(t) = ξ(φ(t)) ρh d5
p ω

2
e (t)

Converter output torque

T1,gb(t) = ψ(φ(t)) · T1,e(t)

Graph for the speed ratio φ(t) =
ωgb

ωe
, and

the experimentally determined ψ(φ(t))

The efficiency in
traction mode
becomes

ηtc =
ωgb T1,gb

ωe T1,e
= ψ(φ)φ
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Average Operating Point Method

I Average operating point method
–Good agreement for conventional powertrains.

I Hand-in assignment.
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Quasistatic analysis – Layout

I More details and better agreement (depends on model quality)
–Good agreement for general powertrains

I Hand-in assignment.
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Quasistatic analysis – IC Engine Structure
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Quasistatic analysis – Engine Operating Points
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Software tools

Different tools for studying energy consumption in vehicle
propulsion systems

Quasi static Dynamic

QSS (ETH) X
Advisor, AVL X (X)
PSAT X
CAPSim (VSim) X

Inhouse tools (X) (X)
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PSAT

Argonne national laboratory
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Advisor
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Advisor

Information from AVL:

I The U.S. Department of Energy’s National Renewable Energy
Laboratory (NREL) first developed ADVISOR in 1994.

I Between 1998 and 2003 it was downloaded by more than
7,000 individuals, corporations, and universities world-wide.

I In early 2003 NREL initiated the commercialisation of
ADVISOR through a public solicitation.

I AVL responded and was awarded the exclusive rights to
license and distribute ADVISOR world-wide.
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