Vehicle Propulsion Systems Lecture 3

Internal Combustion Engine Powertrains Vehicle Energy System

> Lars Eriksson Associate Professor (Docent)

> > Vehicular Systems Linköping University

November 1, 2012

2 / 40

About the hand-in tasks

- ► General advice
 - $\operatorname{\mathsf{-Prepare}}$ yourselves before you go to the computer
- -Make a plan (list of tasks)
- ► Hand-in Format

We would prefer (not a demand):

- ▶ Electronic hand-in
- Report in PDF-format
- Reasons:
 - -Easy for us to comment
 - -Will give you fast feedback

Outline

Repetition

Energy System Overview

Different Links in the Energy Chair Why liquid hydrocarbons?

A Well-to-Miles Analysis

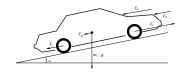
Some Energy Paths

Conventional, Electric and Fuel Cell Vehicles

Pathways to Better Fuel Economy

Other Demands on Vehicles

Performance and Driveability

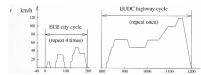

Optimization Problems

Gear ratio optimization

The Vehicle Motion Equation

Newtons second law for a vehicle

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$



- ► F_t tractive force
- ► F_a aerodynamic drag force
- $ightharpoonup F_r$ rolling resistance force
- ▶ F_g gravitational force
- ► F_d disturbance force

5

3 / 40

Energy consumption for cycles

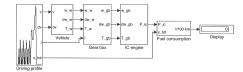

Numerical values for MVEG-95, ECE, EUDC

$$\begin{aligned} & \text{air drag} = \frac{1}{x_{\text{tot}}} \sum_{i \in trac} \overline{v}_i^2 \, h = & & \{319, 82.9, 455\} \\ & \text{rolling resistance} = \frac{1}{x_{\text{tot}}} \sum_{i \in trac} \overline{v}_i \, h = & & \{.856, 0.81, 0.88\} \\ & \text{kinetic energy} = \frac{1}{x_{\text{tot}}} \sum_{i \in trac} \overline{z}_i \, \overline{v}_i \, h = & & \{0.101, 0.126, 0.086\} \end{aligned}$$

 $\bar{\it E}_{\rm MVEG-95} \approx A_f \, c_d \, 1.9 \cdot 10^4 + m_v \, c_r \, 8.4 \cdot 10^2 + m_v \, 10 \qquad kJ/100 km$

Two Approaches for Powertrain Simulation

► Dynamic simulation (forward simulation)


- -"Normal" system modeling direction
- -Requires driver model
- Quasistatic simulation (inverse simulation)

- -"Reverse" system modeling direction
- -Follows driving cycle exactly

QSS Toolbox - Quasistatic Approach

▶ IC Engine Based Powertrain

► The Vehicle Motion Equation – With inertial forces: $\left[m_v + \frac{\gamma^2}{r_o^2}J_e + \frac{1}{r_o^2}J_w\right] \frac{d}{dt}v(t) = \frac{\gamma}{r_w}T_e - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$

Outline

Repetition

Energy System Overview

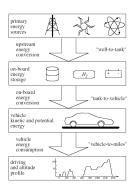
Different Links in the Energy Chain Why liquid hydrocarbons?

A Well-to-Miles Analysis

Some Energy Path

Conventional, Electric and Fuel Cell Vehicles

Other Demands on Vehicles


Performance and Driveability

Optimization Problems

Gear ratio optimization

8/40 9/40

Energy System Overview

Primary sources

Different options for onboard energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

10 / 40

12 / 40

14 / 40

Primary Energy Sources

Few sources - But many options

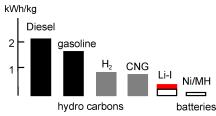
- Oil, Natural Gas, Coal
 - ▶ Oil wells as we know them will be depleted
 - Still much usable carbon in the ground
 - ► Cost will increase
- Nuclear power
 - Fission material available
 - ► Fusion material available
- Solar power
 - Hydro, wind, wave powerSolar cell electricity

 - ► Crop, forest, waste
 - Bacteria

11 / 40

Energy Carriers for On-Board Storage

Energy carriers - Many possibilities


- ▶ Diesel, Gasoline, Naphtha, ...
- ► CH4, Compressed Natural Gas (CNG), Liquefied Petr. Gas (LPG), ...
- ► CH3OH, C2H5OH, C4H9OH, DME, ...
- ► H2
- Batteries

-What are the desirable properties?

- ► High energy density Long range
- ► High refueling power Fast refueling
- ► Simple refueling
- ► Low environmental impact (health aspects)
- ► Infrastructure

Why (Liquid) Hydrocarbons?

- ► Excellent energy density
- High refueling power
- ► Good Well-to-Tank efficiency

(including average engine/motor efficiencies)

13 / 40

Why (Liquid) Hydrocarbons?

Think of the fuel molecules as a wire that pulls the vehicle forward.

- ► -How thick is the fuel wire?
- ▶ 1500 kg car needs 6 liters per 100 km.

Area =
$$0.006/100000 = 6e-8 \text{ m}^2$$

 $D = \sqrt{6e - 8 * 4/pi} \approx 0.3 \text{ mm}$

A 40 000 kg truck needs 30 liters per 100 km.

Area =
$$0.03/100000$$
 = 3e-7 m²
 $D = \sqrt{3e - 7 * 4/pi} \approx 0.6$ mm

-Chemical bonds are strong!

Why (Liquid) Hydrocarbons?

- ▶ Filling a car at the gas station.
 - ▶ filling the tank with 55 [dm³] of gasoline
 - takes about 1 minute and 55 seconds
- ▶ What is the power?

The heating value for isooctane is $q_{LHV}=44.3~\mathrm{[MJ/kg]},$ and the density is $\rho = 0.69 \ [kg/dm^3]$. Gives the power

$$\dot{Q} = \frac{44.3 \cdot 0.69 \cdot 55 \ MJ}{115 \ s} = 14.6 \ [MW]$$

(Perspective: Worlds biggest wind turbine is 7.58 MW. Enercon E-126, rated capacity 7.58 MW, height 198 m (650 ft), diameter 126 m.)

▶ What is the current?

For a single line 240 V system this would mean 60 000 A! (Perspectives: 0.2 A kills a human. Residential house, 3*16 A.)

We have a challenge in finding a replacement for the fuel!

15 / 40

Upstream Energy Conversion

- ► Manufacturing (pumping, crop, ...).
- ► Transport to refinery
- ► Refining
- ► Transport to filling station
- ▶ Filling of Vehicle

Ongoing intense research

-Investigating energy paths and improving all processes.

Energy Conversion in Vehicles

Many paths in the vehicle

- ► Energy storage(s) (tank, battery, super caps)
- ► Energy refiner (reformer)
- ► Energy converter(s)
- ▶ Power (force) to/from transportation mission

This important topic will be covered later in the course

Outline

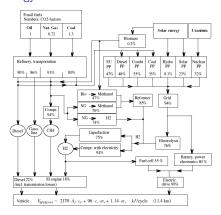
Repetition

Energy System Overview

Different Links in the Energy Chain Why liquid hydrocarbons?

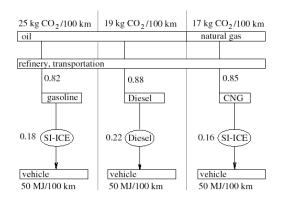
A Well-to-Miles Analysis

Some Energy Paths Conventional, Electric and Fuel Cell Vehicles Pathways to Better Fuel Economy


Other Demands on Vehicles

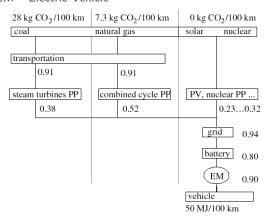
Performance and Driveability

Optimization Problems

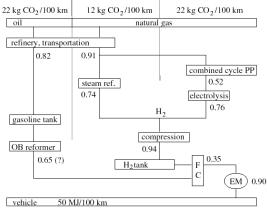

Gear ratio optimization

W2M – Energy Paths

19 / 40


W2M - Conventional Powertrains

20 / 40


18 / 40

W2M - Electric Vehicle

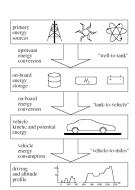
21 / 4

W2M - Fuel Cell Electric Vehicle

22 / 40

Pathways to Better Fuel Economy

Improvements on the big scale


- ► Well-to-tank (Upstream)
- ▶ Wheel-to-miles (Car parameters: mass, rolling, aerodynamics)
- ► Tank-to-wheel

Improvements in Tank-to-wheel efficiencies

- ► Peak efficiency of the components
- Part load efficiency
- ► Recuperate energy
- Optimize structure
- Realize supervisory control algorithms that utilize the advantages offered in the complex systems

23 / 40

Energy System Overview

Primary sources

Different options for onboard energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

Outline

Repetition

Energy System Overview

Different Links in the Energy Chair Why liquid hydrocarbons?

A Well-to-Miles Analysis

Some Energy Path

Conventional, Electric and Fuel Cell Vehicles

Other Demands on Vehicles

Performance and Driveability

Optimization Problems

Gear ratio optimization

Performance and driveability

- ▶ Important factors for customers
- ▶ Not easy to define and quantify
- ► For passenger cars:
 - ► Top speed
 - Maximum grade for which a fully loaded car reaches top speed
 - Acceleration time from standstill to a reference speed (100 km/h or 60 miles/h are often used)

26 / 40

Top Speed Performance

▶ Starting point – The vehicle motion equation.

$$m_{v} \frac{d}{dt} v(t) = F_{t} - \frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t) - m_{v} g c_{r} - m_{v} g \sin(\alpha)$$

► At top speed

$$\frac{d}{dt}v(t)=0$$

and the air drag is the dominating loss.

• power requirement $(F_t = \frac{P_{max}}{V})$:

$$P_{max} = \frac{1}{2} \rho_a A_f c_d v^3$$

Doubling the power increases top speed with 26%.

27 / 40

Uphill Driving

▶ Starting point the vehicle motion equation.

$$m_{v} \frac{d}{dt} v(t) = F_{t} - \frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t) - m_{v} g c_{r} - m_{v} g \sin(\alpha)$$

▶ Assume that the dominating effect is the inclination $(F_t = \frac{P_{max}}{V})$, gives power requirement:

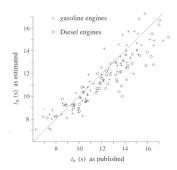
$$P_{max} = v m_v g \sin(\alpha)$$

▶ Improved numerical results require a more careful analysis concerning the gearbox and gear ratio selection.

Acceleration Performance

Starting point: Study the build up of kinetic energy

$$E_0 = \frac{1}{2} \, m_{\nu} \, v_0^2$$


- ► Assume that all engine power will build up kinetic energy (neglecting the resistance forces) Average power: $\bar{P} = E_0/t_0$
- Ad hoc relation, $\bar{P} = \frac{1}{2} P_{max}$ Assumption about an ICE with approximately constant torque (also including some non accounted losses)

$$P_{max} = \frac{m_v \, v^2}{t_0}$$

29 / 40

Acceleration Performance - Validation

Published data and $P_{max} = \frac{m_v v^2}{t_0}$

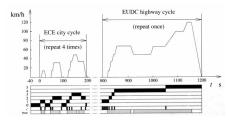
Outline

Optimization Problems

31 / 40

Optimization problems

Different problem types occur in vehicle optimization


- ► Structure optimization
- Parametric optimization
- ► Control system optimization

Outline

Gear ratio optimization

30 / 40

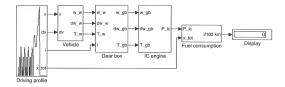
Driving cycle specification – Gear ratio

Gears specified but ratios free.

-How much can changed gear ratios improve the fuel economy?

Path to the solution

- ightharpoonup Implement a simulation model that calculates m_f for the cycle.
- ▶ Set up the decision variables $i_{g,j}$, $j \in [1,5]$.
- ▶ Set up problem

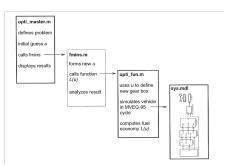

$$\begin{array}{ll} \text{min} & m_f(i_{g,1},i_{g,2},i_{g,3},i_{g,4},i_{g,5}) \\ \text{s.t.} & \text{model and cycle is fulfilled} \end{array} \tag{1}$$

35 / 40

- ▶ Use an optimization package to solve (1)
- ► Analyze the solution.

Model implemented in QSS

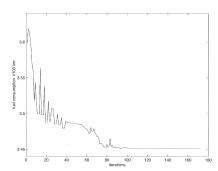
Conventional powertrain.



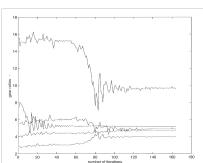
Efficient computations are important.

Structure of the code

34 / 40


38 / 40

Will use a similar setup in hand-in assignment 2.


5 / 40

Running the solver

Improves the fuel consumption with 5%. –Improvements of 0.5% are worth pursuing.

Running the solver

Complex problem, global optimum not guaranteed. Several runs with different initial guesses.

39 / 40