Vehicle Propulsion Systems Lecture 4 Hybrid Powertrains, Topologies and Component Modeling

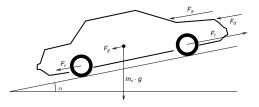
Lars Eriksson Associate Professor (Docent)

Vehicular Systems Linköping University

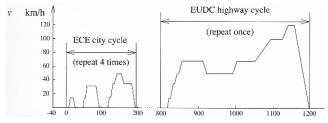
November 5, 2012

VPS – Lecture 4 – Hybrids

A (10) > A (10) > A (10)


Outline

The Vehicle Motion Equation


Newtons second law for a vehicle

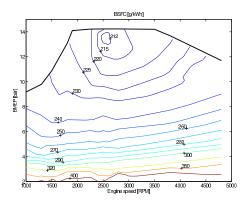
$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- F_t tractive force
- F_a aerodynamic drag force
- F_r rolling resistance force
- F_g gravitational force
- *F_d* disturbance force

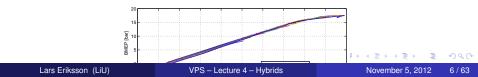
Energy consumption for cycles

Numerical values for MVEG-95, ECE, EUDC

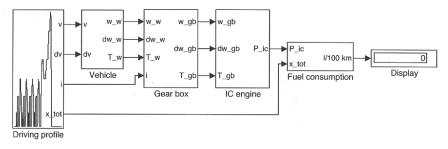
$$\begin{aligned} &\text{air drag} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h = & \{319, 82.9, 455\} \\ &\text{rolling resistance} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h = & \{.856, 0.81, 0.88\} \\ &\text{kinetic energy} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h = & \{0.101, 0.126, 0.086\} \end{aligned}$$


 $\bar{E}_{MVEG-95} \approx A_f c_d \, 1.9 \cdot 10^4 + m_v c_r \, 8.4 \cdot 10^2 + m_v \, 10 \qquad kJ/100 km$

A b


- B

Engine Efficiency Maps


Measured engine efficiency map - Used very often

-Willans line approximation.

Conventional powertrain.

Efficient computations are important

-For example if we want to do optimization and sensitivity studies.

< A >

Outline

Repetition

Introduction to Hybrid-Electric Vehicles

- Potential
- Electric Propulsion Systems
- Overview of Hybrid Electric Configurations
 - Series Hybrid
 - Parallel Hybrid
 - Combined Hybrid
- 4 Electric motors, Generators
 - Modeling
- 5 Batteries, Super Capacitors
- Transfer of Power
 - Power Links
 - Torque Couplers
 - Power Split Devices
- 7 Extra Material
 - Implemented concepts

What characterizes a Hybrid-Electric Vehicle

- Energy carrier is a fossil-fuel.
- Presence of an electrochemical or electrostatic energy storage system.

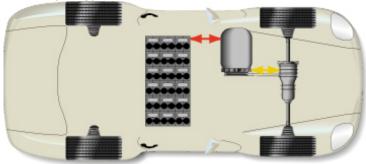
< ∃ > < ∃

< 17 ▶

Benefits of Hybrid-Electric Vehicles

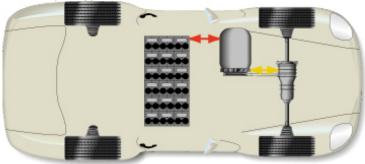
- Downsize engine while maintaining maximum power requirement
- Recover energy during deceleration (recuperation)
- Optimize energy distribution between prime movers
- Eliminate idle fuel consumption by turning off the engine (stop-and-go)
- Eliminate the clutching losses by engaging the engine only when the speeds match

Benefits of Hybrid-Electric Vehicles

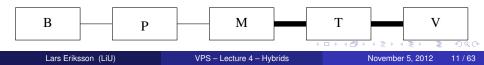

- Downsize engine while maintaining maximum power requirement
- Recover energy during deceleration (recuperation)
- Optimize energy distribution between prime movers
- Eliminate idle fuel consumption by turning off the engine (stop-and-go)
- Eliminate the clutching losses by engaging the engine only when the speeds match

Possible improvements are counteracted by a 10-30% increase in weight.

∃ ► < ∃ ►</p>


A D M A A A M M

Basic topology


2

Basic topology

• Sketch of the paths

Electric vehicle

- Contain basic elements of HEV.
- Not "interesting", for optimization.
 –No in-depth coverage in the course.
- Interesting from the design point of view.
- Drawbacks compared to a conventional vehicle
 - Not autonomous
 - Refueling time
 - Low range/weight
- ⇒ Niche vehicles

- Contain basic elements of HEV.
- Not "interesting", for optimization.
 –No in-depth coverage in the course.
- Interesting from the design point of view.
- Drawbacks compared to a conventional vehicle
 - Not autonomous
 - Refueling time
 - Low range/weight
- ⇒ Niche vehicles
- Plug-in EV:s are hot in media
- Development of plug-less vehicles –Inductive charging
- Range extenders (transition to series hybrid)

Electric Vehicles – From Niche to Public

- Applications requiring zero-emissions.
 - Indoor vehicles, mines ...
 - In-city distribution vehicles
 - Zero emission vehicle requirements
- Other niched vehicles

4 A N

Electric Vehicles – From Niche to Public

- Applications requiring zero-emissions.
 - Indoor vehicles, mines ...
 - In-city distribution vehicles
 - Zero emission vehicle requirements
- Other niched vehicles

Lightning

Tesla Roadster

4 6 1 1 4

VPS – Lecture 4 – Hybrids

THE 1 A

Electric Vehicles – From Niche to Public

- Applications requiring zero-emissions.
 - Indoor vehicles, mines ...
 - In-city distribution vehicles
 - Zero emission vehicle requirements
- Other niched vehicles

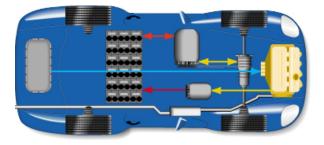
Lightning Nissan Leaf, Volvo C30 Electric

Tesla Roadster

VPS - Lecture 4 - Hybrids

Outline

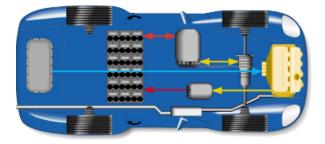
 Electric Propulsion Systems Overview of Hybrid Electric Configurations Series Hybrid Parallel Hybrid Combined Hybrid Modeling Power Links **Torque Couplers** Implemented concepts

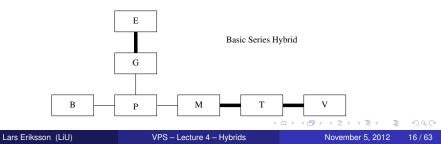

Basic classification of hybrids

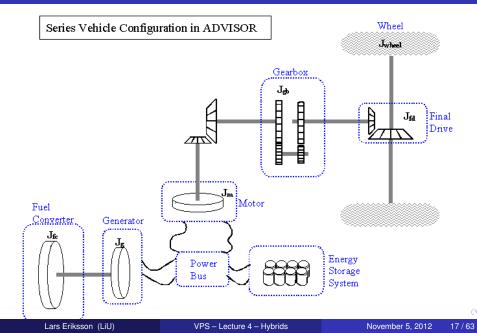
- Series hybrid
- Parallel hybrid
- Series-parallel or combined hybrid

There are additional types that can not be classified into these three basic types

• Complex hybrid (sometimes)

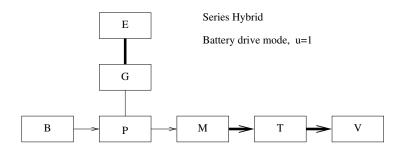

Series Hybrid – Topology


æ


イロト イヨト イヨト イヨト

Series Hybrid – Topology

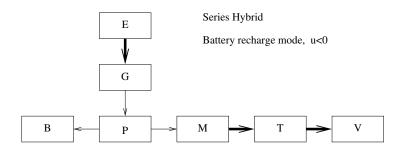
Sketch of the topology



The different modes for a series hybrid

 $u \approx P_{batt}/P_{vehicle}$

Battery drive mode

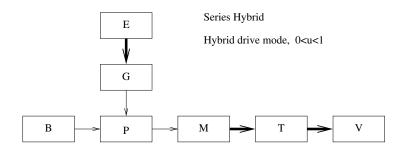

< 6 b

H N

The different modes for a series hybrid

$$u pprox P_{batt} / P_{vehicle}$$

Battery recharge mode

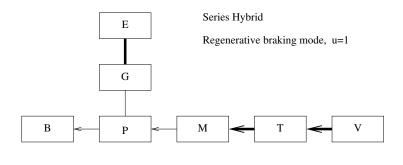


< 6 b

The different modes for a series hybrid

 $u \approx P_{batt}/P_{vehicle}$

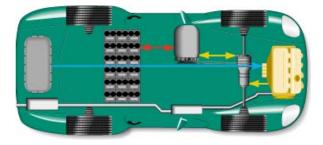
Hybrid drive mode



< 6 b

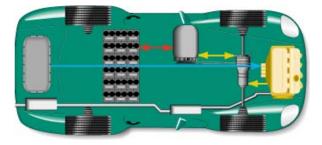
The different modes for a series hybrid

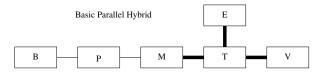
$$u pprox P_{batt} / P_{vehicle}$$


Regenerative braking mode

< 6 b

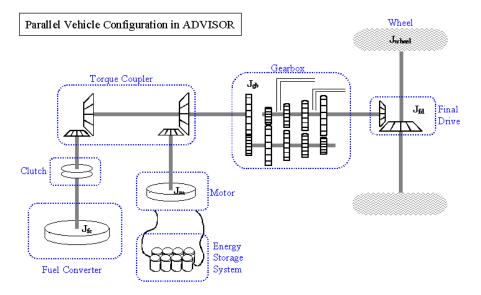
H 5


Parallel Hybrid – Topology


æ

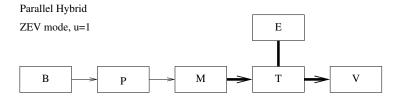
イロト イヨト イヨト イヨト

Parallel Hybrid – Topology



Sketch of the topology

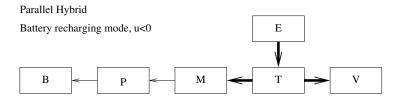
< (17) × <


Parallel Hybrid – Topology

The different modes for a parallel hybrid

 $u pprox P_{batt}/P_{vehicle}$

Battery drive mode (ZEV)

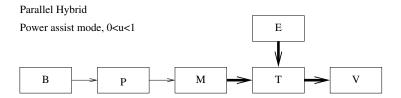


< 6 b

The different modes for a parallel hybrid

 $u pprox P_{batt}/P_{vehicle}$

Battery recharge mode



< 6 b

The different modes for a parallel hybrid

 $u pprox P_{batt}/P_{vehicle}$

Power assist mode

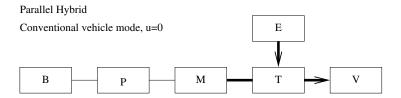


4 6 1 1 4

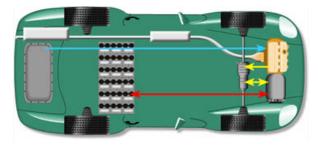
The different modes for a parallel hybrid

 $u pprox P_{batt}/P_{vehicle}$

Regenerative braking mode

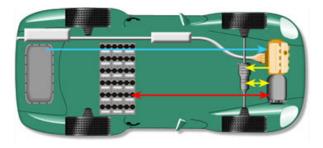


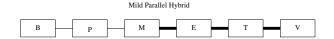
< 6 b


The different modes for a parallel hybrid

 $u pprox P_{batt}/P_{vehicle}$

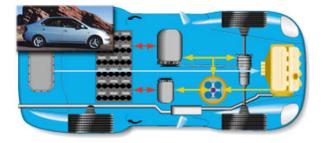
Conventional vehicle


Mild Parallel Hybrid – Topology


æ

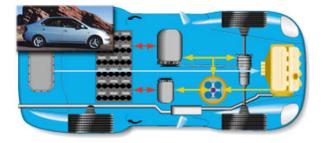
イロト イヨト イヨト イヨト

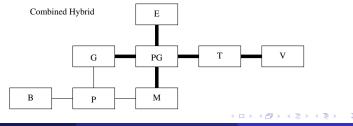
Mild Parallel Hybrid – Topology



Sketch of the topology

< **1** → <

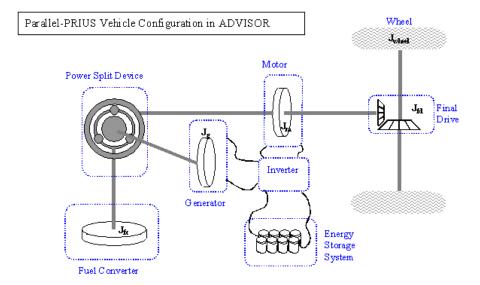

Combined Hybrid – Topology


2

イロン イ理 とく ヨン イヨン

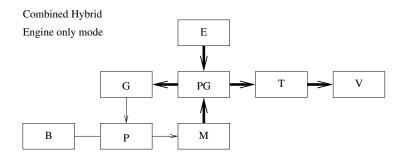
Combined Hybrid – Topology

Sketch of the topology



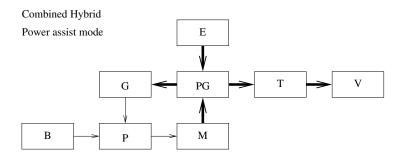
Lars Eriksson (LiU)

VPS - Lecture 4 - Hybrids


November 5, 2012 23 / 63

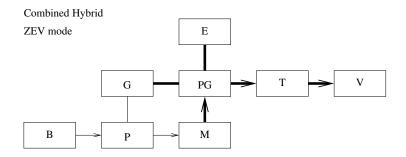
Combined Hybrid – Topology

The different modes for a combined hybrid


Conventional vehicle –Note the loop

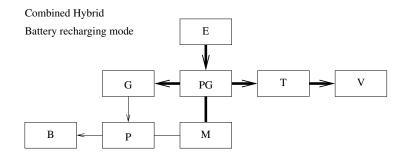
A >

The different modes for a combined hybrid


Power assist mode -Note the loop

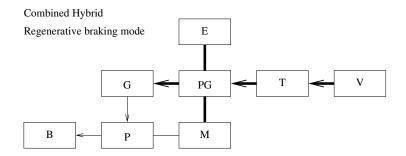
A >

The different modes for a combined hybrid

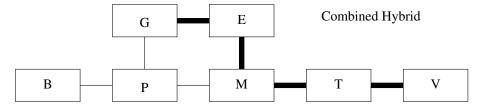

Battery drive mode (ZEV)

< 6 b

The different modes for a combined hybrid


Battery recharge mode

< A >


The different modes for a combined hybrid

Regenerative braking mode

4 A N

Combined Hybrid Without Planetary Gear

2

• Degree of hybridization

-The ratio between electric motor power and engine power.

< 47 ▶

- Degree of hybridization
 - -The ratio between electric motor power and engine power.
- Implemented hybrid concepts in cars
 Degree of hybridization varying between 15–55%
- True mild hybrid concepts
 Degree of hybridization varying 2–15%

Feature	Conv.	Micro	Mild	Full	Plu
Shut of engine at stop-lights and stop-go traffic		(x)	Х	Х)
Regenerative braking and operates above 42 V			X	Х)
Electric motor to assist a conventional en- gine			Х	Х)
Can drive at times using only the electric motor				Х	>
Recharges batteries using the wall plug with at least 32 km range on electricity					>

æ

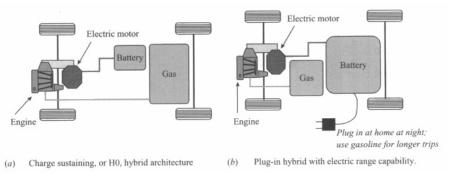
イロト イポト イヨト イヨト

- Charge condition for the battery.
- Full range SOC \in 0–100%.
- Used range SOC \in 50–70%.
- Generally difficult problem
 Models that include aging are not (yet) good enough.

Charge Sustaining Strategy

Charge Sustaining Strategies

- Basic control problem for a hybrid SOC after a driving mission is the same as it was in the beginning –Advisor simulation
- Plug-in hybrids Not charge sustaining


.∃ **) (** 3

A D M A A A M M

Charge Sustaining Strategy

Charge Sustaining Strategies

- Basic control problem for a hybrid SOC after a driving mission is the same as it was in the beginning –Advisor simulation
- Plug-in hybrids Not charge sustaining

Lars Eriksson (LiU)

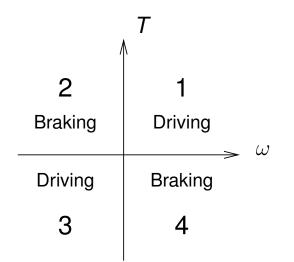
VPS – Lecture 4 – Hybrids

(日) (同) (三) (三)

Outline

Potential Series Hybrid ۲ Combined Hybrid Electric motors, Generators Modeling Power Links Torque Couplers Implemented concepts

Electric motors are often classified into four groups (there are other classifications)

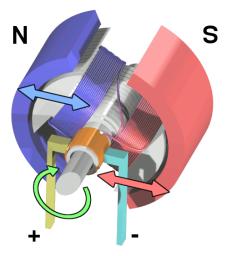

- DC-Machines
- Synchronous machines (sometimes including brushless DC-motor)
- Asynchronous machines
- Reluctance machines

There are also other devices:

Stepper motors (Digitally controlled Synchronous Machine), Ultrasonic motors.

-Separate course: electrical drives.

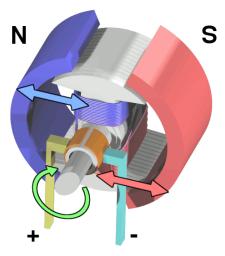
The 4 Quadrants



1 - Motor, 4 - Generator, 2,3 - Reversing

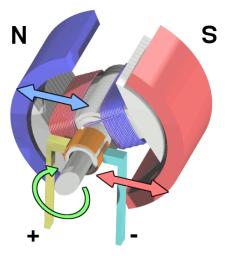
Lars Eriksson (LiU)

VPS - Lecture 4 - Hybrids


э

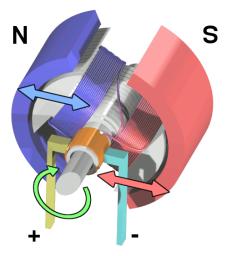
Brush-type DC motor:

- Rotor
- Stator
- Commutator
- Two subtypes:
 - -Permanent magnet
 - -Separately excited


Wikipedia picture

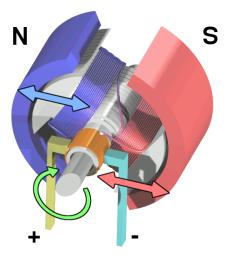
Brush-type DC motor:

- Rotor
- Stator
- Commutator
- Two subtypes:
 - -Permanent magnet
 - -Separately excited


Wikipedia picture

Brush-type DC motor:

- Rotor
- Stator
- Commutator
- Two subtypes:
 - -Permanent magnet
 - -Separately excited


Wikipedia picture

Brush-type DC motor:

- Rotor
- Stator
- Commutator
- Two subtypes:
 - -Permanent magnet
 - -Separately excited

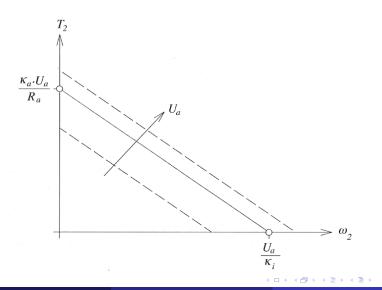
Wikipedia picture

Brush-type DC motor:

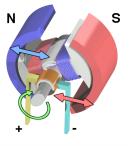
- Rotor
- Stator
- Commutator
- Two subtypes:
 - -Permanent magnet
 - -Separately excited

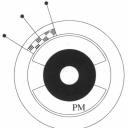
Pros and cons

- + Simple to control
- Brushes require maintenance

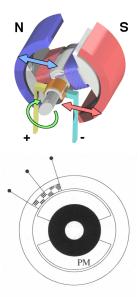

Wikipedia picture

Lars Eriksson (LiU)

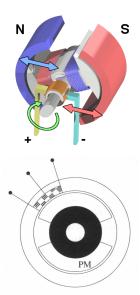

November 5, 2012 34 / 63


DC-motor torque characteristics

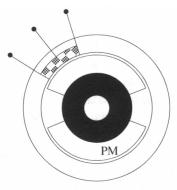
Characteristics of a separately excited DC-motor



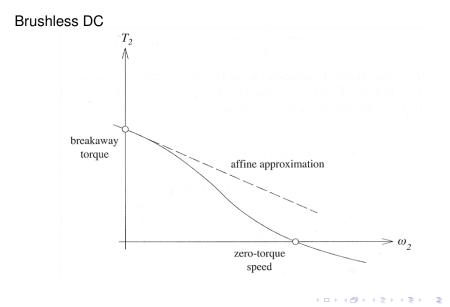
- Solves DC commutator and brushes problem
 - Replace electromagnet in rotor with permanent magnet (PM).
 - Rotate field in stator.



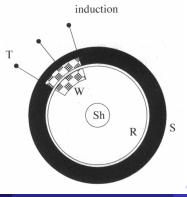
- Solves DC commutator and brushes problem
 - Replace electromagnet in rotor with permanent magnet (PM).
 - Rotate field in stator.
- DC-motor is misleading
 - DC source as input
 - Electronically controlled commutation system AC


- Solves DC commutator and brushes problem
 - Replace electromagnet in rotor with permanent magnet (PM).
 - Rotate field in stator.
- DC-motor is misleading
 - DC source as input
 - Electronically controlled commutation system AC
- Linear relations between
 - current and torque
 - voltage and rpm

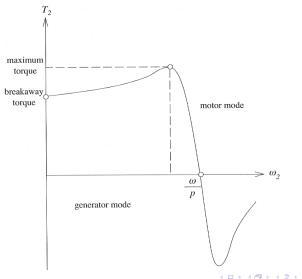
Synchronous AC machines


- AC machine
- Rotor follows the rotation of the magnetic field
- Has often *permanent magnets* in rotor

 This is the same as the brushless DC motor.

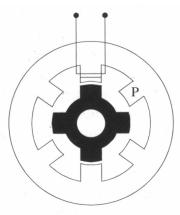

synchronous

Torque Characteristics


Asynchronous AC machines – Induction motors

- Stator has a rotating magnetic fiels
- Rotor has a set of windings, squirrel cage -See separate animation.
- Electric field induces a current in the windings
- Torque production depends on slip.

Torque Characteristics


-Induction AC motor

Reluctance machines

Reluctance = Magnetic resistance.

- Synchronous machine
- Rotating field
- Magnetic material in the rotor
- Rotor tries to minimize the reluctance

Electrical Machines in Hybrids

Machines encountered

- Separately excited DC
- Permanent magnet synchronous DC
- Induction motors
- (Switched reluctance machines)
 –Considered to be interesting

AC motors (compared to DC motors)

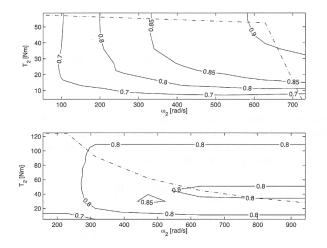
Less expensive but more sophisticated control electronics, gives higher overall cost. Higher power density, higher efficiency.

AC motors (permanent magnet vs induction motors)								
Averaged values from	Advisor data	abase.						
	Efficiency	Power density						
permanent magnet	92.5%	0.66 kW/kg						
induction motors	90.5%	0.76 kW/kg						
Lars Eriksson (LiU)	N N	VPS – Lecture 4 – Hybrids	November 5, 2012	42 / 63				

Quasistatic (equations are general)

- Power relationships:

 –input power P₁(t)
 –delivered power P₂(t) = T₂(t) ω₂(t)
- Efficiency usage


$$P_1(t) = P_2(t)/\eta_m(\omega_2(t), T_2), \qquad P_2(t) > 0$$

$$P_1(t) = P_2(t) \cdot \eta_m(\omega_2(t), -T_2), \qquad P_2(t) < 0$$

- Description of the efficiency in look-up tables
- Willans line to capture low power performance

First quadrant maps for η_m – AC machines

PM Synchronous

Induction motor, Asynchronous AC

Extending the Maps for η_m

- Traditional first quadrant drive is normally well documented –Supplier information for $\eta_m(\cdots)$
- Electric motor drive

$$P_2(t) = \eta_m(\omega_2(t), T_2) \cdot P_1(t), \qquad P_2(t) > 0$$

• Electric generator load

$$P_1(t) = \eta_g(\omega_2(t), T_2) \cdot P_2(t), \qquad P_2(t) < 0$$

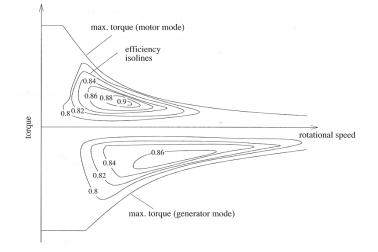
• How to determine η_g ?

Extending the Maps for η_m

- Traditional first quadrant drive is normally well documented –Supplier information for $\eta_m(\cdots)$
- Electric motor drive

$$P_2(t) = \eta_m(\omega_2(t), T_2) \cdot P_1(t), \qquad P_2(t) > 0$$

Electric generator load


$$P_1(t) = \eta_g(\omega_2(t), T_2) \cdot P_2(t), \qquad P_2(t) < 0$$

- How to determine η_g ?
- Method 1: Mirror the efficiency map

$$\eta_m(\omega_2(t), -T_2) = \eta_g(\omega_2(t), T_2)$$

- Method 2: Calculate the power losses and mirror them
- Method 3: Willans approach

Two Quadrant Maps for η_m

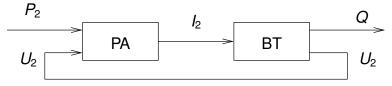
Mirroring efficiency is not always sufficient.

Lars Eriksson (LiU)

VPS - Lecture 4 - Hybrids

- More advanced models
 - Use component knowledge: Inductance, resistance
 - Build physical models
- Dynamic models are developed in the book.

Potential Series Hybrid ۲ Combined Hybrid Modeling **Batteries**, Super Capacitors Power Links **Torque Couplers** Implemented concepts

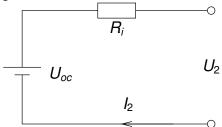

- Energy storage devices Energy density important
- Performance Power density important
- Ourability

	Energy	Power	cycles
Battery type	Wh/kg	W/kg	
Lead-acid	40	180	600
Nickel-cadmium	50	120	1500
Nickel-metal hydride	70	200	1000
Lithium-ion	130	430	1200

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

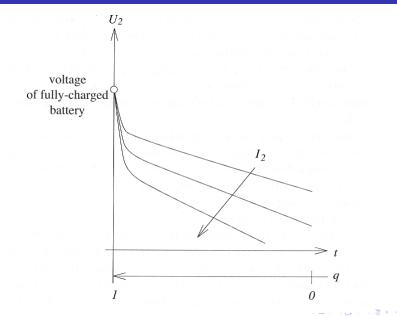
• Causality for Battery models in QSS.


- Models have two components
 - The first component is

$$I_2 = \frac{P_2}{U_2}$$

The other, the relation between voltage and terminal current SOC

$$U_2 = f(SOC, I_2, \ldots)$$


Simple model for the battery –Open circuit voltage *U*_{oc}

Output voltage

 $U_2 = U_{oc} - R_i I_2$

Voltage and SOC

Lars Eriksson (LiU)

VPS - Lecture 4 - Hybrids

November 5, 2012 52 / 63

Battery – Efficiency definition

Efficiency definition is problematic

- Not an energy converter
- Energy storage
- Peukert test

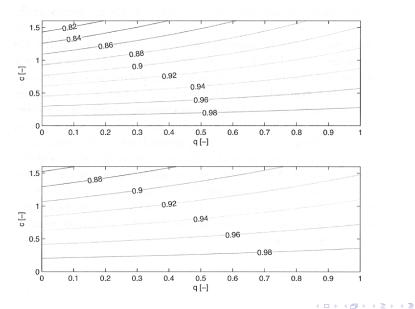
-Constant current during charge and discharge.

Ragone test

-Constant power during charge and discharge.

• Efficiency will depend on the cycle.

$$E_d = \int_0^{t_f} P_2(t) dt = / \text{Peukert test...} / = t_f (U_{oc} - R_i \cdot I_2) \cdot I_2$$

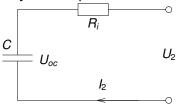

 $|E_c| = \int_0^{t_f} |P_2(t)| dt = /\text{Peukert test...}/ = t_f(U_{oc} + R_i \cdot |I_2|) \cdot |I_2|$

$$\eta_b = \frac{E_d}{E_c}$$

Can also define an instantaneous efficiency.

Lars Eriksson (LiU)

Efficiency definition – Instantaneous


Lars Eriksson (LiU)

VPS - Lecture 4 - Hybrids

November 5, 2012 54 / 63

Supercapacitors

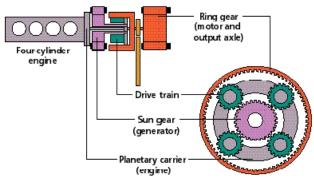
- Supercapacitors and ultracapacitors
- High power density
 - -Used as short time scale energy buffer.
 - -Load leveling to the battery.
- Very similar to battery in modeling Exchange the battery for a capacitor in the circuit below.

$$U_{oc}(t) = \frac{Q(t)}{C} = \frac{1}{C} \int I(t) dt$$

• Efficiency definitions Peukert and Ragone

Lars Eriksson (LiU)

Series Hybrid ۲ Combined Hybrid Modeling Transfer of Power Power Links Torque Couplers Power Split Devices Implemented concepts


- Electrical glue components
 - DC-DC converters
 - DC-AC converter
- Account for power losses

A >

- Components that are included to:
 - Glue for mechanical systems acting on the same shaft
- Can include:
 - Gears in the coupling equation
 - Sub models for friction losses
- Basic equations
 - -Angular velocities
 - -Torque (from a power balance, including losses)

Power Split Devices

- Manage power splits between different components
- Important component for achieving flexibility
- Modeling approach: Speed relations with torque from power balance.

Planetary gear set (power split device)

Can add more planetary gears

Lars Eriksson (LiU)

.

< 6 b

Potential Series Hybrid ۲ Combined Hybrid Modeling Power Links Torque Couplers Power Split Devices Extra Material Implemented concepts

Passenger cars

- Parallel hybrids
- Combined hybrids
- Very few series hybrids (range extenders to EV).

Trucks and busses

- Series hybrids
- Parallel hybrids
- Combined hybrids
- Diesel trains
 - Series configuration but no storage

'08 List of Hybrid Passenger Cars (Incomplete)

- Chevrolet Silverado Hybrid Truck, Chevrolet Tahoe Hybrid
- Daihatsu Highjet
- Ford Escape, Ford Mercury Mariner Hybrid
- GMC Sierra Hybrid Truck, GMC Yukon Hybrid
- Highlander Hybrid
- Honda Accord Hybrid, Honda Civic Hybrid, Honda Insight Hybrid
- Landrover Hybrid
- Lexus GS450h, Lexus RX 400h
- Nissan Altima
- Porsche Cayenne Hybrid
- Saturn VUE Greenline Hybrid
- Suzuki Twin
- Toyota Alphard Hybrid, Toyota Camry, Toyota Estima Hybrid, Toyota Prius
- Twike

(B) (A) (B) (A)

Repetition

Introduction to Hybrid-Electric Vehicles

- Potential
- Electric Propulsion Systems
- Overview of Hybrid Electric Configurations
 - Series Hybrid
 - Parallel Hybrid
 - Combined Hybrid
 - Electric motors, Generators
 - Modeling

- Batteries, Super Capacitors
- Transfer of Power
 - Power Links
 - Torque Couplers
 - Power Split Devices
- Extra Material
 - Implemented concepts