Vehicle Propulsion Systems Lecture 7

Supervisory Control Algorithms

Lars Eriksson Associate Professor (Docent)

> Vehicular Systems Linköping University

November 21, 2012

Outline

Repetition

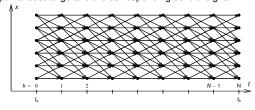
Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems

ECMS – Equivalent Consumption Minimization Strategy

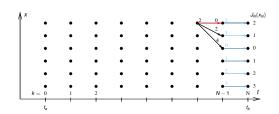

3/33

Deterministic Dynamic Programming - Basic algorithm

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

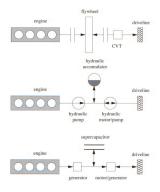
Algorithm idea:

Start at the end and proceed backward in time to evaluate the optimal cost-to-go and the corresponding control signal.

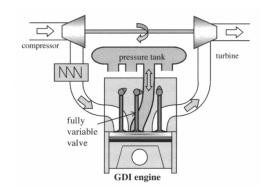


4/33

1/33


Deterministic Dynamic Programming – Basic Algorithm

Graphical illustration of the solution procedure


5/33

Examples of Short Term Storage Systems

6/30

Pneumatic Hybrid Engine System

7/

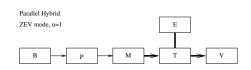
Outline

Repetition

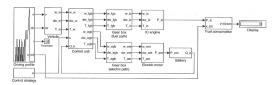
Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies


Analytical solutions to Optimal Control Problems
ECMS – Equivalent Consumption Minimization Strategy

Parallel Hybrid - Modes and Power Flows


The different modes for a parallel hybrid

 $u \approx P_{batt}/P_{vehicle}$

Battery drive mode (ZEV)

Control algorithms

Determining the power split ratio u

$$u_j(t) = \frac{P_j(t)}{P_{m+1}(t) + P_l(t)}$$
 (4.110)

10/33

- ▶ Clutch engagement disengagement $B_c \in \{0, 1\}$
- Engine engagement disengagement B_e ∈ {0, 1}

Strategies for the Parallel Hybrid

Power split u, Clutch B_c , Engine B_e

	Mode	и	B_e	B_c
1	ICE	0	1	1
2a	ZEV	1	0	0
2b	ZEV	1	0	1
3	Power assist	[0,1]	1	1
4	Recharge	< 0	1	1
5a	Regenerative braking	1	0	0
5a	Regenerative braking	1	0	1

All practical control strategies have engine shut off when the torque at the wheels are negative or zero; standstill, coasting and braking.

11/33

Classification I - Supervisory Control Algorithms

- Non-causal controllers
 - Detailed knowledge about future driving conditions.
 - Position, speed, altitude, traffic situation.

Regulatory drive cycles, public transportation, long haul operation, GPS based route planning.

- Causal controllers
 - No knowledge about the future...
 - Use information about the current state.
 - Uses:

"The normal controller", on-line, in vehicles without planning

Classification II - Vehicle Controllers

- ► Heuristic controllers
 - -Causal
 - -State of the art in most prototypes and mass-production
- Optimal controllers
 - -Often non-causal
 - -Solutions exist for simplifications
- Sub-optimal controllers
 - -Often causal

On-going work to include optimal controllers in prototypes

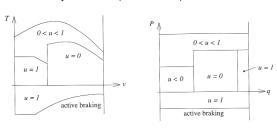
Some Comments About the Problem

- ► Difficult problem
- Unsolved problem for causal controllers
- Rich body of engineering reports and research papers on the subject
 - -This can clearly be seen when reading chapter 7!

Outline

Heuristic Control Approaches

Heuristic Control Approaches


Operation usually depends on a few vehicle operation

- Rule based: $\textbf{Nested} \; \texttt{if-then-else} \; \textbf{clauses}$ if $v < v_{low}$ then use electric motor (u=1). else...
- Fuzzy logic based Classification of the operating condition into fuzzy sets. Rules for control output in each mode. Defuzzyfication gives the control output.

Heuristic Control Approaches

torque demand.

Parallel hybrid vehicle (electric assist)

 Determine control output as function of some selected state variables: vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration,

Heuristic Control Approaches - Concluding Remarks

- ► Easy to conceive
- ► Relatively easy to implement
- ► Result depends on the thresholds
- Proper tuning can give good fuel consumption reduction and charge sustainability
- Performance varies with cycle and driving condition –Not robust
- Time consuming to develop an tune for advanced hybrid configurations

18/33

Outline

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems
ECMS – Equivalent Consumption Minimization Strategy

19/33

Consider a driving mission

Variables. Control signal − u(t), System state − x(t), State of charge q(t) (is a state).

20/33

Formulating the Optimal Control Problem

-What is the optimal behaviour? Defines Performance index J.

▶ Minimize the fuel consumption

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) dt$$

▶ Balance between fuel consumption and emissions

$$J = \int_0^{t_f} \left[\dot{m}_f(t, u(t)) + \alpha_{CO} \dot{m}_{CO}(x(t), u(t)) + \alpha_{NO} \dot{m}_{NO}(x(t), u(t)) + \alpha_{HC} \dot{m}_{HC}(x(t), u(t)) \right] dt$$

Include driveability criterion

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) + \beta \left(\frac{d}{dt}a(t)\right)^2 dt$$

21/33

First Solution to the Problem

► Minimize the fuel consumption

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) dt$$

22/33

Including constraints

Hard or soft constraints

$$min J(u) = \int_{t_a}^{t_b} L(t, u(t)) dt$$
s.t. $q(0) = q(t_f)$

$$\min \ J(u) = \phi(q(t_f)) + \int_{t_a}^{t_b} L(t,u(t)) dt$$

▶ How to select $\phi(q(t_f))$?

$$\phi(q(t_f)) = \alpha (q(t_f) - q(0))^2$$

penalizes high deviations more than small, independent of sign

$$\phi(q(t_f)) = w(q(0) - q(t_f))$$

penalizes battery usage, favoring energy storage for future use

One more feature from the last one

23/3

Including constraints

► Including battery penalty according to

$$\phi(q(t_f)) = w(q(0) - q(t_f)) = w \int_0^{t_f} \dot{q}(t)dt$$

enables us to rewrite

$$\min \ J(u) = \int_{t_a}^{t_b} L(t, u(t)) + w \, \dot{q}(t) dt$$

Constraints That are Also Included

- State equation $\dot{x} = f(x)$ is also included From Lecture 5
- Consider hybrid with only one state, SoC

$$\begin{aligned} \min J(u) &= \phi(q(t_b), t_b) + \int_{t_a}^{t_b} L(t, u(t)) dt \\ s.t. &\frac{d}{dt}q = f(t, q(t), u(t)) \\ &u(t) \in U(t) \\ &q(t) \in Q(t) \end{aligned}$$

333

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems

ECMS - Equivalent Consumption Minimization Strategy

26/33

▶ Core of the problem

$$\begin{aligned} & \text{min } J(u) = \phi(q(t_b), t_b) + \int_{t_a}^{t_b} L(t, u(t)) dt \\ & s.t. \ \dot{q}(t) = f(t, q(t), u(t)) \end{aligned}$$

► Hamiltonian from optimal control theory

$$H(t, q(t), u(t), \mu(T)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$$

27/33

Analytical Solutions to Optimal Control Problems

Hamiltonian

$$H(t, q(t), u(t), \mu(T)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$$

► Solution (theory from chapter 9)

$$u(t) = \underset{u}{\operatorname{arg\,min}} H(t, q(t), u(t), \mu(T))$$

with

$$\dot{\mu}(t) = -\frac{\partial}{\partial q} f(t, q(t), u(t))$$
$$\dot{q}(t) = f(t, q(t), u(t))$$

▶ If $\frac{\partial}{\partial q}f(t,q(t),u(t))=0$ the problem becomes simpler μ becomes a constant μ_0 , search for it when solving

28/33

Analytical Solutions to Optimal Control Problems

 $ightharpoonup \mu_0$ depends on the (soft) constraint

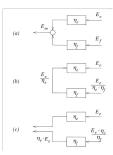
$$\mu_0 = rac{\partial}{q(t_f)}\phi(q(t_f)) = / ext{special case}/ = -w$$

▶ Different efficiencies

$$\mu_0 = \frac{\partial}{\partial \textit{q}(\textit{t}_\textit{f})} \phi(\textit{q}(\textit{t}_\textit{f})) = \begin{cases} -\textit{w}_\textit{dis}, & \textit{q}(\textit{t}_\textit{f}) > \textit{q}(0) \\ -\textit{w}_\textit{chg}, & \textit{q}(\textit{t}_\textit{f}) < \textit{q}(0) \end{cases}$$

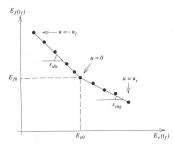
 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) \frac{H_{LHV}}{V_b Q_{max}}$$


ECMS - Equivalent Consumption Minimization Strategy

29/3

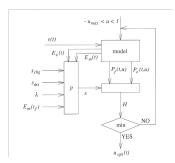
Determining Equivalence Factors I


Constant engine and battery efficiencies

$$egin{aligned} oldsymbol{s}_{ extit{dis}} &= rac{1}{\eta_e\,\eta_i} \ oldsymbol{s}_{ extit{chg}} &= rac{\eta_e}{\eta_i} \end{aligned}$$

Determining Equivalence Factors II

 Collecting battery and fuel energy data from test runs with constant u gives a graph



► Slopes determine s_{dis} and s_{chg} .

31/3

ECMS On-line Implementation

Flowchart

There is also a T-ECMS (telemetry-ECMS)