Vehicle Propulsion Systems Lecture 3 Internal Combustion Engine Powertrains Vehicle Energy System

Lars Eriksson Professor

Vehicular Systems Linköping University

November 4, 2015

2 / 42

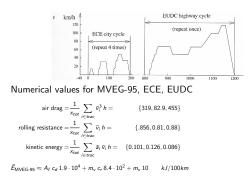
Outline

Repetition

Energy System Overview Different Links in the Energy Chain Why liquid hydrocarbons?

A Well-to-Miles Analysis

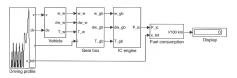
Conventional, Electric and Fuel Cell Vehicles Pathways to Better Fuel Economy


Other Demands on Vehicles

Optimization Problems

Gear ratio optimization

4 / 42


Energy consumption for cycles

6 / 42

QSS Toolbox – Quasistatic Approach

IC Engine Based Powertrain

► The Vehicle Motion Equation – With inertial forces: $\begin{bmatrix} m_v + \frac{\gamma^2}{r_w^2} J_e + \frac{1}{r_w^2} J_w \end{bmatrix} \frac{d}{dt} v(t) = \frac{\gamma}{r_w} T_e - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$

About the hand-in tasks

- General advice
 - -Prepare yourselves before you go to the computer -Make a plan (list of tasks)
- Hand-in Format
 - We would prefer (not a demand):
 - Electronic hand-in
 - Report in PDF-format
 Reasons:
 - –Easy for us to comment
 - -Will give you fast feedback

The Vehicle Motion Equation

Newtons second law for a vehicle

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- F_a aerodynamic drag force
- F_r rolling resistance force
- F_g gravitational force
- ► *F_d* disturbance force

3 / 42

Two Approaches for Powertrain Simulation

- "Normal" system modeling direction -Requires driver model
- Quasistatic simulation (inverse simulation)

Cycle Vehicle Wheel Transm. Engine

–"Reverse" system modeling direction
 –Follows driving cycle exactly

7 / 42

Outline

Repetition

Energy System Overview Different Links in the Energy Chain Why liquid hydrocarbons?

Well-to-Miles Analysis

Some Energy Paths Conventional, Electric and Fuel Cell Vehicle: Pathways to Better Fuel Economy

Other Demands on Vehicles

Performance and Driveabil

Optimization Problems

Gear ratio optimization

Energy System Overview

 Impact of the second second

Primary sources

Different options for onboard energy storage Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

10 / 42

Energy Carriers for On-Board Storage

Energy carriers - Many possibilities

- Diesel, Gasoline, Naphtha, ...
- \blacktriangleright CH4, Compressed Natural Gas (CNG), Liquefied Petr. Gas (LPG), \ldots
- ▶ CH3OH, C2H5OH, C4H9OH, DME, ...
- ► H2
- Batteries
- -What are the desirable properties?
 - High energy density Long range
 - ► High refueling power Fast refueling
 - Simple refueling
 - Low environmental impact (health aspects)
 - Infrastructure

12 / 42

Why (Liquid) Hydrocarbons?

Think of the fuel molecules as a wire that pulls the vehicle forward.

- -How thick is the fuel wire?
- ► 1500 kg car needs 6 liters per 100 km. Area = $0.006/100000 = 6e-8 \text{ m}^2$ $D = \sqrt{6e - 8 * 4/pi} \approx 0.3 \text{ mm}$
- A 40000 kg truck needs 30 liters per 100 km. Area = 0.03/100000 = 3e-7 m²

 $D = \sqrt{3e - 7 * 4/pi} \approx 0.6 \text{ mm}$

-Chemical bonds are strong!

14 / 42

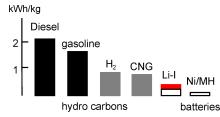
Upstream Energy Conversion

- Manufacturing (pumping, crop, ...).
- Transport to refinery
- Refining
- Transport to filling station
- Filling of Vehicle

Ongoing intense research

-Investigating energy paths and improving all processes.

Primary Energy Sources


Few sources - But many options

- Oil, Natural Gas, Coal
 - Oil wells as we know them will be depleted
 - Still much usable carbon in the ground
- Cost will increase
- Nuclear power
 - Fission material available
 - Fusion material available
- Solar power
 - Hydro, wind, wave powerSolar cell electricity
 - Solar cell electricity
 Crop, forest, waste
 - Bacteria

11 / 42

Why (Liquid) Hydrocarbons?

- Excellent energy density
- High refueling power
- Good Well-to-Tank efficiency

(including average engine/motor efficiencies)

13 / 42

15/42

Why (Liquid) Hydrocarbons?

- Filling a car at the gas station.
 filling the tank with 55 [dm³] of gasoline
 - takes about 1 minute and 55 seconds
- ▶ What is the power? The heating value for isooctane is $q_{LHV} = 44.3$ [MJ/kg], and the density is $\rho = 0.69$ [kg/dm³]. Gives the power

$$\dot{Q} = rac{44.3 \cdot 0.69 \cdot 55 \ MJ}{115 \ s} = 14.6 \ [MW]$$

(Perspective: Worlds biggest wind turbine is 7.58 MW. Enercon E-126, rated capacity 7.58 MW, height 198 m (650 ft), diameter 126 m.)

 What is the current?
 For a single line 240 V system this would mean 60 000 A! (Perspectives: 0.2 A kills a human. Residential house, 3*16 A.)

We have a challenge in finding a replacement for the fuel!

Energy Conversion in Vehicles

Many paths in the vehicle

- Energy storage(s) (tank, battery, super caps)
- Energy refiner (reformer)
- Energy converter(s)
- Power (force) to/from transportation mission

This important topic will be covered later in the course

Outline

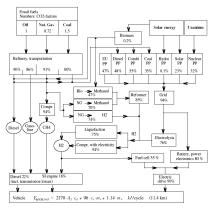
Repetition

nergy System Overview Different Links in the Energy Chain Why liquid hydrocarbons?

A Well-to-Miles Analysis

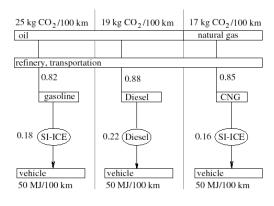
Some Energy Paths Conventional, Electric and Fuel Cell Vehicles Pathways to Better Fuel Economy

Other Demands on Vehicles

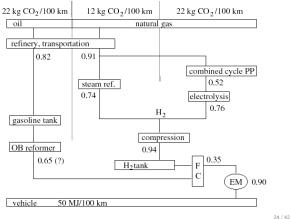

Performance and Driveabili

Optimization Problems

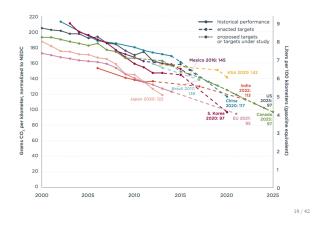
Gear ratio optimization


18 / 42

W2M – Energy Paths


20 / 42

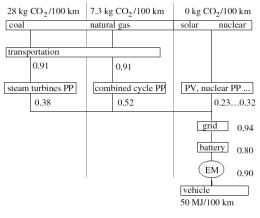
W2M - Conventional Powertrains



22 / 42

W2M - Fuel Cell Electric Vehicle

Environmental Concern - CO₂ as technology driver



Environmental Concern - Coal+Sulphur, Beijing 2013

21 / 42

W2M – Electric Vehicle

23 / 42

Pathways to Better Fuel Economy

Improvements on the big scale

- Well-to-tank (Upstream)
- Wheel-to-miles (Car parameters: mass, rolling, aerodynamics)
- Tank-to-wheel
- Improvements in Tank-to-wheel efficiencies
 - Peak efficiency of the components
 - Part load efficiency
 - Recuperate energy
- Optimize structure
- Realize supervisory control algorithms that utilize the advantages offered in the complex systems

Energy System Overview

primary energy sources	A	×	\bigotimes
upstream energy conversion		"we	ll-to-tank"
on-board energy storage		<u>H</u> 2	<u>+</u>
on-board energy conversion		"tank-	to-vehicle'
vehicle kinetic and pote energy	ential {	$\widehat{}$	U
vehicle energy consumption		"vehicl	e-to-miles'
driving and altitude profile	» لېم	<u>~</u>	-^

Primary sources

Different options for onboard energy storage Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

26 / 42

Performance and driveability

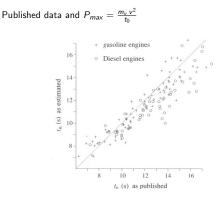
- Important factors for customers
- Not easy to define and quantify
- For passenger cars:
 - Top speed
 - Maximum grade for which a fully loaded car reaches top speed
 Acceleration time from standstill to a reference speed (100
 - ${\rm km/h}$ or 60 miles/h are often used)

28 / 42

Uphill Driving

Starting point the vehicle motion equation.

$$m_{\nu}\frac{d}{dt}\nu(t) = F_t - \frac{1}{2}\rho_a A_f c_d v^2(t) - m_{\nu} g c_r - m_{\nu} g \sin(\alpha)$$


Assume that the dominating effect is the inclination $(F_t = \frac{P_{max}}{v})$, gives power requirement:

 $P_{max} = v m_v g \sin(\alpha)$

 Improved numerical results require a more careful analysis concerning the gearbox and gear ratio selection.

30 / 42

Acceleration Performance – Validation

Outline

Repetition

Energy System Overview Different Links in the Energy Chai Why liquid hydrocarbons?

Well-to-Miles Analysis Some Energy Paths Conventional, Electric and Fuel Cell Vehicles Pathways to Better Fuel Economy

Other Demands on Vehicles Performance and Driveability

Gear ratio optimization

27 / 42

Top Speed Performance

Starting point – The vehicle motion equation.

$$m_v \frac{d}{dt} v(t) = F_t - \frac{1}{2} \rho_a A_f c_d v^2(t) - m_v g c_r - m_v g \sin(\alpha)$$

At top speed

 $rac{d}{dt}v(t)=0$

and the air drag is the dominating loss.

• power requirement $(F_t = \frac{P_{max}}{v})$:

$$P_{max} = \frac{1}{2} \rho_a A_f c_d v^3$$

Doubling the power increases top speed with 26%.

29 / 42

Acceleration Performance

 Starting point: Study the build up of kinetic energy

$$E_0 = rac{1}{2} m_v v_0^2$$

- Assume that all engine power will build up kinetic energy (neglecting the resistance forces) Average power: $\vec{P} = E_0/t_0$
- Ad hoc relation, $\bar{P} = \frac{1}{2} P_{max}$ Assumption about an ICE with approximately constant torque (also including some non accounted losses)

$$P_{max} = \frac{m_v v^2}{t_0}$$

31 / 42

Outline

Repetition

```
nergy System Overview
Different Links in the Energy Chain
Why liquid hydrocarbons?
```

A Well-to-Miles Analysis

Some Energy Paths Conventional, Electric and Fuel Cell Vehicles Pathways to Better Fuel Economy

Other Demands on Vehicles

Performance and Driveabilit

Optimization Problems

Gear ratio optimization

Optimization problems

Different problem types occur in vehicle optimization

- Structure optimization
- Parametric optimization
- Control system optimization

Outline

Repetition

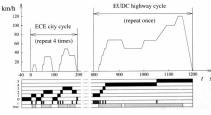
Energy System Overview Different Links in the Energy Chair Why liquid hydrocarbons?

A Well-to-Miles Analysis

Some Energy Paths Conventional, Electric and Fuel Cell Vehicles Pathways to Better Fuel Economy

Other Demands on Vehicles

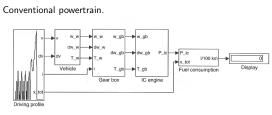
Tenormanee and Driveability


Optimization riobienis

Gear ratio optimization

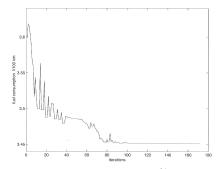
35 / 42

34 / 42


Driving cycle specification – Gear ratio

Gears specified but ratios free. -How much can changed gear ratios improve the fuel economy?

36 / 42


Model implemented in QSS

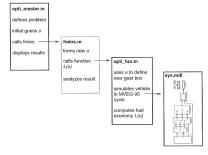
Efficient computations are important.

38 / 42

Running the solver

Improves the fuel consumption with 5%. –Improvements of 0.5% are worth pursuing.

Path to the solution

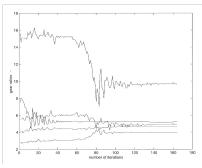

- Implement a simulation model that calculates m_f for the cycle.
- ▶ Set up the decision variables $i_{g,j}$, $j \in [1, 5]$.
- Set up problem

min
$$m_f(i_{g,1}, i_{g,2}, i_{g,3}, i_{g,4}, i_{g,5})$$

s.t. model and cycle is fulfilled (1)

- Use an optimization package to solve (1)
- Analyze the solution.

37 / 42


Structure of the code

Will use a similar setup in hand-in assignment 2.

39 / 42

Running the solver

Complex problem, global optimum not guaranteed. Several runs with different initial guesses.