Utvärdering av metoder och modeller för att simulera växlingskomfort i entreprenadfordon

Examensarbete
utfört i Fordonssystem,
Institutionen för systemteknik
Vid Linköpings universitet

av Daniel Brengdahl

Regnr: LITH-ISY-EX—05/3735--SE

11 maj 2005
Utvärdering av metoder och modeller för att simulera växlingskomfort i entreprenadfordon

Examensarbete
utfört i Fordonssystem,
Institutionen för systemteknik
Vid Linköpings universitet

Utfört för Volvo Construction Equipment Components AB
av Daniel Brengdahl

Regnr: LITH-ISY-EX—05/3735--SE

Handledare: Conny Carlqvist MSc
Volvo CE Components AB

Johan Wahlström MSc
Linköpings Universitet

Examinator: Professor Lars Nielsen
Linköpings Universitet

Linköping 2005-05-11
Evaluation of methods and models for simulation of gearshifting comfort in construction equipment vehicles

Good comfort for the driver of a construction machine is crucial. Gearshift comfort is an important part of the total comfort. Volvo Construction Equipment Components has a simulation environment of the powertrain, SimPow, which is implemented in Matlab/Simulink. SimPow is mostly used for simulation of control strategies and performance. In order to be able to study gearshifting comfort, Volvo has an interest in developing new models for SimPow. The purpose of this thesis work is to build complementing models for SimPow, and evaluate what modifications are needed in order to be able to study gearshifting comfort. The work is limited to study only movement in the longitudinal direction and for one vehicle - the Wheel Loader L150E. The models are implemented in Simulink.

The complementing models are of two kinds:
- Models of the vehicle. The bodies, vehicle frame and cabin are considered as rigid bodies. Elements consisting of springs and dampers, insulators, are connecting frame and cabin. Driving forces from the wheels results in acceleration (longitudinal, vertical and rotational) and jerk for the center of gravity of the vehicle frame. The acceleration of the frame gives rise to forces in the insulators, connecting frame and cabin. These forces accelerates the cabin and the driver.
- Longitudinal models of the wheels. Torque from the powertrain gives rise to a longitudinal force, driving force, in the contact patch between ground and tire.

The conclusion from the evaluation shows that a longitudinal model of the wheels is needed. Further, it is considered sufficient to study and measure the longitudinal acceleration of the frame. Therefore, the models of the vehicle are not needed.

Keyword
fordonsmodellering, simulering, framdrivning, hjul, däck, växlingskomfort
Sammanfattning

Målet med examensarbetet är att ta fram kompletterande modeller till SimPow och bedöma vilka ändringar och tillägg som måste göras för att kunna bedöma växlingskomfort.

Avgränsningarna har gjorts till att endast studera rörelse i longitudinell led och bygga modeller i Simulink. Vidare studeras endast ett fordon – hjullastaren L150E.

De kompletterande modellerna är av två typer: fordonsmodeller som överför dragkraften från hjulen till rörelse i ram, hytt och sits, samt longitudinella hjulmodeller, vilka överför vridmomentet på utgående axel till dragkraft.

Fordonsmodellerna har byggts i form av stela kroppar som påverkas av krafter och resulterar i acceleration, hastighet och position i horisontal-, vertikal- och rotationsled för kroppens tyngdpunkt. Krafter överförs mellan kropparna via horisontella och vertikala fjäderelement.

Bedömningen från utvärderingen är att en longitudinell hjulmodell bör tillföras. Vidare bedömdes det tillräckligt att studera acceleration i longitudinell led och mäta accelerationen i ramen. Modellerna för fortplantning av rörelse från ramen till hytt och föraren behövs därför inte.
Abstract

Good comfort for the driver of a construction machine is crucial. Gearshift comfort is an important part of the total comfort. Volvo Construction Equipment Components has a simulation environment of the powertrain, SimPow, which is implemented in Matlab/Simulink. SimPow is mostly used for simulation of control strategies and performance. In order to be able to study gearshifting comfort, Volvo has an interest in developing new models for SimPow.

The purpose of this thesis work is to build complementing models for SimPow, and evaluate what modifications are needed in order to be able to study gearshifting comfort. The work is limited to study only movement in the longitudinal direction and for one vehicle - the Wheel Loader L150E. The models are implemented in Simulink.

The complementing models are of two kinds:

- Models of the vehicle. The bodies, vehicle frame and cabin are considered as rigid bodies. Elements consisting of springs and dampers, insulators, are connecting frame and cabin. Driving forces from the wheels results in acceleration (longitudinal, vertical and rotational) and jerk for the center of gravity of the vehicle frame. The acceleration of the frame gives rise to forces in the insulators, connecting frame and cabin. These forces accelerates the cabin and the driver.
- Longitudinal models of the wheels. Torque from the powertrain gives rise to a longitudinal force, driving force, in the contact patch between ground and tire.

The conclusion from the evaluation shows that a longitudinal model of the wheels is needed. Further, it is considered sufficient to study and measure the longitudinal acceleration of the frame. Therefore, the models of the vehicle are not needed.
Förord

Detta examensarbete är utfört hösten 2004 av Daniel Brengdahl på uppdrag av Volvo Construction Equipment Components AB i Eskilstuna. Arbetet har skett vid avdelningen för hållfasthetsprovning och beräkning, TUFB.
Examensarbetet har även utförts i samarbete med gruppen Fordonssystem vid institutionen för systemteknik vid Linköpings Tekniska Högskola.

Jag vill tacka min handledare, Conny Carlqvist på Volvo, samt doktorand Johan Wahlström vid Linköpings Tekniska Högskola för handledning och uppmuntran under arbetet. Jag vill också tacka Morgan Norling och de andra på TUFB för hjälp, stöd och uppmuntran, vilket gjort vistelsen i Eskilstuna mycket trevlig. Ett tack även till Per Sjödin som gjorde det möjligt att få provköra hjullastare. Tack också till alla andra som varit mycket hjälpsamma och tillmötesgående.

Daniel Brengdahl
Eskilstuna, maj 2005
Innehållsförteckning

1 Inledning ... 1
 1.1 Syfte ... 1
 1.2 Förutsättningar och avgränsningar 2
 1.3 Förstudier ... 2
 1.4 Litteratur ... 3
 1.5 Angreppssätt .. 4

2 Bakgrund ... 5
 2.1 Företagspresentation .. 5
 2.2 Komfort .. 5
 2.2.1 Ljud ... 5
 2.2.2 Stötighet .. 5
 2.2.3 Orsaken till stötigheten 6
 2.2.4 Påverkan på kroppen 6
 2.2.5 Kraft ... 7
 2.2.6 Timing .. 7
 2.2.7 Samverkan av faktorer 7
 2.3 Hjullastare .. 7
 2.3.1 Drivlinja .. 7
 2.3.2 Motor .. 8
 2.3.3 Momentomvandlare 9
 2.3.4 Transmission .. 9
 2.3.5 Hytt ... 10
 2.4 SimPow ... 12
 2.4.1 Hjulmodeller i simpow 13
 2.4.2 Växlingskomfortparametern ryck i MatLab 13
 2.4.3 Modeller i simulink 14
 2.5 Simuleringar .. 14
 2.5.1 Begynnelsevärdén för variabler i modellerna 14
 2.5.2 Tidssteg vid simulering 14
 2.6 Körcykler ... 15
 2.6.1 Acceleration .. 16
 2.6.2 Acceleration till grushög 17
 2.6.3 Nedväxling .. 18
 2.6.4 Kortlastarcykel .. 18

3 Simuleringsmodeller .. 21
 3.1 Befintligt modell ... 21
 3.2 Tillägg av fordonsmodeller 21
 3.3 Mått och data för modeller 21
 3.4 Kroppsmodell .. 21
 3.5 Fjädermodeller .. 23
 3.5.1 Linjär vertikal isolatormodell 24
 3.5.2 Olinjär vertikal modell av hyttisolator 25
 3.5.3 Linjär horisontell isolatormodell 27
 3.6 Modell med fast monterad hytt 27
 3.7 Modell med ram och hytt 29
3.8 Modell med ram, hytt och sits
3.9 Hjul
3.9.1 Hjul
3.9.2 Vertikalled
3.9.3 Drivning
3.9.4 Slip och skid
3.9.5 Dragkraft F_d
3.9.6 Slipgenerering
3.9.7 Slip vid låg hastighet
3.9.8 Insignaler för utvärdering av slipmodeller
3.9.9 Hjulmodell med två slipfunktioner
3.9.10 Hjulmodell med slipgenererande enligt fjäder/dämparmodell
3.9.11 Hjulmodell med slipgenerering enligt fjäder/dämpare med ytterligare dämpning
4 Resultat
4.1 Utvärdering av modellerna avseende växlingskomfort
4.1.1 Originalmodellen
4.2 Hyttmodeller
4.2.1 Utvärdering hyttmodeller vid uppväxling 2-3
4.2.2 Utvärdering av hyttmodeller vid nedväxling 2-1
4.3 Hjulmodeller
4.3.1 Växling 2-3
4.3.2 Växling 1-2
4.3.3 Växling 3-4
4.3.4 Utvärdering avseende framdrivning och slirning
4.3.5 Injustering av parametrar
5 Slutsats
6 Diskussion och felkällor
7 Framtid
Bibliografi
8 Bilaga 1 – Utvärdering av växlingar
8.1 Växling 2-3
8.2 Växling 1-2
8.3 Växling 3-4
8.4 Växling fram-back och back-fram
8.5 Utvärdering av hjulmodell vid växling 2-1
8.5.1 Snäll nedväxling
8.5.2 Hård nedväxling
8.6 Utvärdering av hyttmodell vid växling 2-1
8.7 Utvärdering av däckens slirande egenskaper
9 Bilaga 2 - Variabelförteckning
9.1.1 Variabler för text och simulinkmodell
9.1.2 Parametervärden för modeller
1 Inledning

1.1 Syfte
Syftet med examensarbetet är att utvärdera vilka metoder och modeller som behövs för att kunna simulera växlingskomfort. Utifrån dagens existerande simuleringsmodell tas kompletterande modeller fram. Minst två modeller av olika komplexitetsgrad behövs. Mer specifikt innebär det ett framtagande av en modell för hur föraren påverkas vid växling. Om vridmomentet till de drivande hjulen betraktas som insignal så ska därför en modell tas fram, som visar hur föraren påverkas komfortmässigt. För detta krävs en modell för hur däcken överför vridmomentet till en horisontell dragkraft och hur denna fortfarande sig till förarhytten och föraren. En skiss över detta visas i Fig. 1. En växling känns genom att det rycker till i fordonet då nästa växel läggs i. Denna stötighet kan ses tydligt som svängningar i accelerations- och rycksignal i t.ex. Fig. 41. Växlingskomfortsparametrarna acceleration och ryck är av intresse att studera i simuleringsmodellen, framförallt för att se hur de påverkas av:

- ett byte av komponenter i drivlinan
- förändring av transmissionens styrkod
- förändring av motorns styrkod
1.2 Förutsättningar och avgränsningar

För växlingskomfortstudier är det tillräckligt att studera körning i longitudinell led. Vid framtagandet av däcksmodellerna ägnas de parametrar som påverkar kurvtagning och sidokrafter därför inte något intresse. Vidare har alla simuleringar utförts på plant underlag. I de dragkraftsgenererande modeller som används antas kontaktytan mellan däckmönster och marken vara rektangulär och tryckfördelningen över kontaktytan konstant. Ett annat förenklat antagande som gjorts är att en förändring av fordonets massa (vid fyllning av skopan) sker i fordonets tyngdpunkt. Tyngdpunkten flyttas således inte och rotationströgheten ändras inte heller.

1.3 Förstudier

De första tre veckorna ägnades åt studier för att kunna förstå problemet och hur en hjullastare och dess komponenter fungerar. Särskild uppmärksamhet har ägnats åt drivlinekomponenterna momentomvandlare och transmission. Vidare har ett antal
komfortartiklar studerats, i syfte att få förståelse för komfortbegrepp och normer. Även litteratur som behandlar däckens funktion har studerats.

1.4 Litteratur
1.5 Angreppssätt

Problemformuleringen bryts ned i två mindre delar – dels hjulens framdrivande egenskaper och dels fordonets rörelse. Hjulen omvandlar vridmoment på utgående axel till en dragkraft som verkar på axlarna på de drivande hjulen. Dragkraften resulterar i acceleration i longitudinell-, vertikal- och rotationsled för ramen. Ramaccelerationen överförs till kraft i elementen (isolatorer) som förbinder ram och hytt. Denna kraft resulterar i en acceleration för hytten. Hjulens funktion ses i Fig. 2 och fordonsrörelsen i Fig. 3.

![Fig. 2 Principskiss för hjulens funktion](image1)

![Fig. 3 Principskiss för fordonsrörelse](image2)
2 Bakgrund

2.1 Företagspresentation

2.2 Komfort

2.2.1 Ljud

2.2.2 Stötighet
Alla som har åkt bil har vid något tillfälle säkerligen lagt märke till att växelbyte känns fysiskt genom att fordonet ”stöter till”. Är denna stötighet stor upplevs det som obehagligt. En stöt upplevs kanske inte som så obehaglig, men hjullastarföraren arbetar 8 timmar per dag och med de korta körcykler föraren kör växlar fordonet ofta och stötarna upplevs därför som obehagliga. En perfekt växling i avseende stötighet torde innebära att växlingen inte känns alls. De kvantifierbara parametrar som påverkar intrylecket av stötighet är acceleration a, och ryck, eller vanligare använt jerk,

$$jerk(t) = \frac{da(t)}{dt}$$
2.2.3 Orsaken till stötigheten

En växellåda med automatisk transmission fungerar i princip på samma sätt, med skillnaden att kopplingarna istället ligger på axlarna i transmissionen och att det oftast sitter en momentomvandlare som fungerar som dämpare mellan motoraxeln och transmissionen.

Stötigheten beror alltså på varvtalsskillnaden mellan axlarna och hur snabbt de tvingas anta samma hastighet, d v s. kopplingens inslirning. Vid långsam inslirning blir stötigheten mindre, men kraftöverföringen blir sämre och värmeutvecklingen i de slirande kopplingarna blir stor. Det sistnämnda har en negativ inverkan på kopplingarnas livslängd och inslirningsförloppet får därför inte ta för lång tid. Det finns alltså ett motsatsförhållande mellan växlingskomfort och kopplingslivslängd.

2.2.4 Påverkan på kroppen

Den mänskliga kroppen har olika känslighet för vibrationer i olika riktning, med olika amplituder, olika frekvenser och olika varaktigheter. I vertikalled är kroppen mest känslig för vibrationer med frekvenser om 4-8 Hz medan kroppen för rörelse i horisontalled är mest känslig för frekvenser om 1-2Hz [10]. Exempelvis tål vi vertikala störningar om 1 Hz bra, då dessa sammanfaller med frekvensen vid normal gång. Däremot är kroppen känslig för horisontella störningar om 1 Hz.

De för drivlinan mest intressanta frekvenserna finns i området 1-10Hz, eftersom frekvenser i detta område innehåller tillräckligt mycket energi för att påverka kroppen. Kroppens olika organ har olika resonansfrekvenser beroende på massa, struktur och storlek. Axlar, mage och överkropp har alla resonansfrekvenser inom området 1-10Hz.

Det har genomförts ett flertal mätningar som syftat till att kvantifiera vad som är bra växlingskomfort, men utan att några entydiga resultat framkommit. Olika källor har använt olika mätmetoder och har gett olika resultat. Enligt [8] är vi särskilt känsliga för lågfrekvent ryck med frekvenser under 1 Hz, samtidigt som källan menar att vi har svårt att urskilja ryck med lägre toppvärde än 10 m/s³. I [4] dras slutsatsen att en växling med acceleration mindre än 0.1g (~1m/s²) och med ryck lägre än 2g per sekund (~20m/s³) kan betraktas som perfekt, medan accelerationen överstigande 0.3g (~3m/s²) upplevs som dålig.
2.2.5 Kraft
Vid växling är det viktigt att föraren ges intrycket att maskinen får mer kraft. Växlingen ska därför ske snabbt och utan att vridmomentet på utgående axlar sjunker alltför mycket. Framförallt får vridmomentet inte byta riktning.
Att växlingen går fort är speciellt viktigt vid växling i uppförsbacke då fordonet vid en långsam växling riskerar att stanna upp och i värsta fall kan börja rulla bakåt.
Om växlingen tar lång tid och momentet sjunker betydligt betecknas det som en seg växling, vilket inte är ett önskat beteende.

2.2.6 Timing
För att en växling ska känna bra krävs att den sker då föraren förväntar sig att växling ska ske. Detta förutsätter att växlingsförloppet är repeterbart.

2.2.7 Samverkan av faktorer
För att föraren ska uppfatta växlingen som bra krävs att alla ovanstående faktorer är uppfyllda. Dessutom inverkar även andra faktorer såsom förarens förutfattade mening, hans humör och yttre omständigheter.

2.3 Hjullastare
Volvos hjullastare finns i varierande storlekar med maskinvikt från 8 till 50 ton. Samtliga är ramstyrda med motorn monterad bak och redskapslyft fram. Fjädringen utgörs av däck med stor luftkammare. Ett typiskt användningsområde för hjullastaren är materialhantering. Den modellerade modellen, L150E, väger ca 25 ton, den kan förses med skopa i storlek 3-12m³ och lyfta maximalt 15 ton.

2.3.1 Drivlina
Drivlinan på hjullastaren består av motor, momentomvandlare, transmission och axlar och visas i Fig. 4.
2.3.2 Motor

Motorerna är turboförsett dieselmotorer med effekt från 100 till 500 hk. Motorer med cylindervolym under 4 liter köps in från extern leverantör, storleken mellan 4 och 7 liter tillverkas enligt ett samarbete mellan Volvo och Deutz, och motorer större än 7 liter produceras av Volvo Powertrain men anpassas för bruk i anläggningsmaskiner. Hjullastaren L150E är försedd med en 9-litersmotor om 284 Hk. En motor till L180E visas i Fig. 5.

Fig. 4 Drivlinan i hjullastare

Fig. 5 Motor D12C till L180E
2.3.3 Momentomvandlare

Momentomvandlaren har två viktiga funktioner – den kan förstärka utgående vridmoment (till priset av lägre rotationshastighet på turbinaxeln) och den frikopplar motorn från transmissionen. En automatisk transmission saknar den koppling mellan motor och transmission som en drivlina med manuell transmission har och därför är den frikopplande funktionen viktig.

En nackdel med momentomvandlaren är att det uppkommer energiförluster då oljan pumpas runt. En principskiss över en momentomvandlare visas i Fig. 6.

Fig. 6 Momentomvandlare i tvärsnitt (t.v) och uppskuren (t.h). I tvärsnittet: A - axeln från motorn, B - axel till transmissionen, 1 – turbinhjul, 2 – pumphjul, 3 - statorn

2.3.4 Transmission

Volvo tillverkar och utvecklar transmissoner av två typer – dels planetväxeltyp och dels transmissioner med motroterande kugghjul, så kallade countershaft. Samtliga transmissoner till Volvos större hjullastare är automatiska och av countershafttyp. De styrts elektroniskt och har fyra fram- och fyra backväxlar. Normalt startar fordonet på växel två. Växel 1 har låg utväxling och aktiveras genom att föraren trycker på kickdownknappen på färdriktningssreglaget. Växel 1 används vid mycket hög belastning, t.ex. vid körning i grushögen i kortlastarcykeln (se 0). År villkoren för kick-down (bland annat låg hastighet) uppfyllda aktiveras växel 1. Effektuttag till redskapslyften sker genom oljepumpar monterade i transmissonen. En hjullastatrtransmission ser ut enligt Fig. 7.
2.3.5 Hytt

Hytten rymmer en förare och de instrument han behöver för att kunna operera fordonet. Förarplatsen i en L180E visas i Fig. 8.

Hytten är upphängd i ramen med fyra stycken gummibussningar, så kallade isolatorer, som har fjädrande och stötdämpande verkan. Förarstolen har inbyggd fjädring, vars försäkring ställs in efter förarens vikt.

Fig. 8 L180E hytt invändigt
2.4 SimPow

VCEs simuleringsmiljö för drivlinesimuleringar heter SimPow, en förkortning för Simulation of Powertrain. SimPow används först och främst till regler- och prestandasimuleringar, men användningsområdena ökar. SimPow är implementerat i Matlab/Simulink. En möjlighet som används ibland är att göra simuleringsmodeller för mekaniken i transmissionen och övriga fordonet i ADAMS. Simulering av hela fordonet sker genom co-simulering, d.v.s. modellerna i respektive simuleringsmiljö ”kopplas ihop”.

SimPow är objektorienterat och de ingående delarna i drivlinan finns som block med standardgränssnitt i ett modellbibliotek. En drivlina byggs genom att koppla ihop dessa block med varandra enligt Fig. 9. Eftersom blocken har ett standardgränssnitt är det lätt att i en modell byta ut t.ex. en motor mot en annan och studera effekterna av det. I modellbiblioteket finns modeller av olika komplexitetsgrad och modeller av alla drivlinekomponenter. Ett exempel visas i Fig. 10. De flesta modellerna är mycket noggranna. Vissa komponenter är utvecklade av andra Volvobolag, t.ex. motormodeller.

Fig. 9 Drivlinesimuleringsmiljön SimPow
2.4.1 Hjulmodeller i Simpow

I dagsläget finns ingen dynamisk modell för hjulen i SimPow. Framdrivningsprincipen är att hjulen hela tiden uppfyller rullvillkoret, dvs. ej slirar och momentant överför utgående-axelmomentet till dragkraft (går skämtsamt under beteckningen ”kuggstångslera”).

I uppgiften ingår att ta fram en dynamisk modell för hjulen, dels med hänsyn till den vertikala fjädringen och dämpningen som sker då däcket deformeras och dels avseende drivningen då hjulen kan slira. Sidokrafter som uppkommer då fordonet svänger behandlas ej i detta examensarbete, ej heller drivkrafterna vid kurvtagnings

2.4.2 Växlingskomfortparametern ryck i MatLab

Accelerationsderivatan ryck kan fås ur Simulinkmodellen genom att derivera accelerationssignalerna. Problemet är att högfrekventa komponenter med annat ursprung än växling kommer med. Vid ett samtidigt utfört examensjobb där mätningar av växlingskomfort gjorts [9], fann man det lämpligt att innan derivering bandpassfiltera accelerationssignalen med ett butterworthfilter av ordning fyra och gränsfrekvenserna 0.5 Hz och 10 Hz. Derivering av signalen sker enligt bakåtifferensmetoden,

\[Ryck = \frac{acc[t+1] - acc[t]}{T_s}, \quad T_s \text{ är samplingstid} \]
2.4.3 Modeller i simulink

Ekvationer som implementeras i Simulink blir lätt svåröverskådliga och inte lika intuitiva som i andra program såsom t.ex. MathModelica. Om en modell ska vara lätt att förstå och kunna användas av andra är det viktigt att den är strukturerad, logisk och konsekvent uppbyggd. Vidare är det bra om modellen är generell så att den kan användas för flera applikationer och kopplas ihop till större system utan att behöva modifieras. Grundkomponenterna för de kompletterande fordonsmodellerna är hjul, fjädrar med dämpning och masskropp.

En horisontell och en vertikal fjäder kombineras ihop och bildar ett hyttupphängningselement. På samma sätt bildar två masskroppar tillsammans med två hyttupphängningselement en enkel modell för hur hytten sitter ihop med ramen. De modellblock som används har ”maskats”, d.v.s. konstanter som förekommer i blocken definieras i en dialogruta, vilket gör det lättare att ha kontroll på vilka parametrar som modellen behöver.

2.5 Simuleringar

Simuleringar har utförts med ett flertal olika fordonsmodeller, som tagits fram genom att kombinera grundkomponenterna ovan.

2.5.1 Begynnelsevärden för variabler i modellerna

Begynnelsevärden för de olika variablerna i modellerna har tagits fram genom att simulera respektive modell med dragkraftsinsignalen satt till noll. På så sätt ges ingen framåtdrivande kraft, men fordonets delar kommer ändå att röra sig på grund av att fjädrarna initialt inte befinner sig i statisk jämvikt. Dämpningen i fjäderprotinenten gör att fordonens delarnas rörelse minskar och stannar i statiskt jämviktsläge. Värdena för x, z, θ, x_u, w, ϕ, x_s och w_s läses av och sätts som initialvärden i modellen.

2.5.2 Tidssteg vid simulering

För att få bra precision i beräkningarna och för att vissa däcksmodeller över huvud taget ska gå att använda, krävs att tidsstegen i simuleringarna är små. Sedan tidigare används differentialekvationslösaren ODE45 med variabelt tidssteg. En förkortning av längsta tidssteget måste göras för att få bra resultat och i simuleringarna har ett längsta tidssteg om 0.0002 sekunder genomgående använts. Resultatet av ett för stort tidssteg visas i Fig. 11. Framförallt är det däckmodellerna som vid låg hastighet kräver kort tidssteg. Modellerna där slipet modelleras som en fjäder är mindre kritiska vad gäller steglängden och uppvisar gott resultat med så långt tidssteg som 0,005 sekunder.
Körcykler som använts simulerar köring om minst 30 sekunder och med det största tidssteget och den dubbelprocessor PentiumII 450 Mhz som använts kräver varje SimPowsimulering mellan 20 och 60 min beräkningstid.

2.6 Körcykler

Modellerna utvärderas genom att testa dem i olika körcykler. Sedan tidigare finns i Simulink flera olika körcykler för simulering. Dessa utformas efter vad som önskas simuleras. Tillämpningarna är många. En körcykel kan skapas så att den i möjligaste mån efterliknar en verklig körcykel. Den kan också sättas samman för att:

- testa ett specifikt belastningsfall
- för att utvärdera en förändring av styrkod till transmission
- se effekterna av en ändrad utväxling eller för att validera modellen

Aktiviteterna i en körcykel körs som funktion av tiden eller som funktion av sträckan. I en verklig köring sker alla aktiviteter som funktion av sträckan – hjullastaren möter ett högre gångmotstånd när den på en given position kör in i grushögen, skopan fylls i takt med att den tränger in i grushögen och när skopan är fylld lägger föraren i backväxel. Om växlingsförloppet vid acceleration på plant underlag ska studeras kan istället önskat gaspådrag ställas in och växling ske enligt transmissionens växlingsprogram. Fyra olika typer av körcykler har använts och de beskrivs nedan.

Fig. 11 Tidsstegets inverkan på stegsvar för däcksmodell. Till vänster används tidssteg om 0,002 s och till höger 0,02 s. Signalerna är ingående vridmoment (blå) och dragkraft (grön)
2.6.1 Acceleration

Det här är en accelerationskörcykel som tagits fram för att utvärdera stötigheten som uppkommer vid uppväxling. Underlaget är plant med konstant rullmotstånd och friktionskoefficient om 0,6 och fordonet är olastat. Start sker från stillstående med neutralläge aktiverat och inget gaspådrag. Växel två framåt aktiveras efter en sekund och från två sekunder och framåt ges fullt gaspådrag. Efter tre sekunder ges order om kick-down, varpå växel ett läggs i. Fordonet tvingas köra med fullgas på växel ett i sex sekunder, då växel två framåt åter aktiveras. Därefter sker acceleration med full gas varpå växel tre och fyra aktiveras, vilket kan ses i Fig. 12. Fordonet har efter 16 sekunder en hastighet av ungefär 6 m/s.

Fig. 12 Exempel på simuleringsresultat med accelerationskörcyklen
2.6.2 Acceleration till grushög

Köröykeln har skapats för att utvärdera hjulens slirande egenskaper. Den är identisk med accelerationskörcykeln de första 16 sekunderna. Där rampas gångmotståndet upp dramatiskt och hålls konstant efter 23 sekunder, vilket kan ses i Fig. 13. Detta kan liknas vid en stor mjuk grushög som först ger efter och sedan blir ogenomtränglig. Hjullastaren har vid 16 sekunder en hastighet av ca 6 m/s på fyrans växel då det kraftigt ökade gångmotståndet snabbt sänker farten, varpå nedväxling till trean och kick-down till ettan sker. Gångmotståndet från grushögen är så stort att fordonets dragkraft inte räcker för att forcera hindret. Dragkraften är större än vad friktionskraften mot underlaget tillåter och däckmodellen kan utvärderas med avseende på de slirande egenskaperna. Efter 20 sekunder ges gasavdrag och dragkraften avtar, varpå däckmodellernas egenskaper kan utvärderas med avseende på däckens uppspänning.

Fig. 13 Urklipp från simulering med körcykeln grushög mellan 15-24 sekunder. Modellen som simuleras är med däck av fjäder/dämpartyp och fast monterad hytt
2.6.3 Nedväxling

Denna körcykel är skapad för att utvärdera stötigheten som uppkommer vid nedväxling. Gaspedalens läge hålls konstant genom hela cykeln. Hjullastaren startar med fart på fyraans växel och växlas manuellt ned en växel i taget. Ett simuleringsexempel för nedväxlingsskörcykeln visas i Fig. 14.

![Fig. 14 Exempel på simuleringsresultat från nedväxlingsskörcykel](image)

2.6.4 Kortlastarcykel

Detta är en typisk körcykel för en hjullastare. Maskinen kör in i grushögen och fyller skopan, backar tillbaka, åker fram till en lastbil, tippar lasten och upprepar därefter proceduren. Utdrag från en simulering med kortlastarcykeln visas i Fig. 15 och Fig. 16. Start sker på tvåans växel bakåt med ett initialt motorvarvtal om 1900 rpm. Fordonet bromsar in och lägger i växel två framåt då det byter riktning.
Efter ca 7 sekunder beordrar föraren kick-down till växel 1 då han strax kör in i grushögen och gångmotståndet ökar. Simuleringsresultat av detta visas i Fig. 16. Föraren fyller skopan genom att tillsa den bakåt, varpå maskinen tränger längre in i grushögen och gångmotståndet ökar mer. Efter 12.3 sekunder förs växelföraren till backläge och maskinen backar ur grushögen. Fordonet backar i ungefär fyra sekunder, för att sedan lägga i växel två framåt, köra framåt i ca 7 sekunder, tömma lasten och slutligen lägga i växel två bakåt och avsluta med att backa.
3 Simuleringsmodeller

3.1 Befintlig modell
Den modell av fordonet som i dagsläget visar fordonets rörelse kan liknas vid en punktformig beskrivning. Dragkraft, gångmotstånd, luftmotstånd etc. verkar i punkten och resulterar i position, hastighet, acceleration och ryck för punkten. Även föraren är placerad i punkten. Dragkraften, F_d, är under alla omständigheter vridmomentet på utgående axel, T, dividerat med effektiv rullradie, r_e.

3.2 Tillägg av fordonsmodeller
Vid konstruktion av modellerna för fordonet var grundidén att bygga dessa genom att koppla ihop flera enkla mass- och fjäderblock. De fordonsmodeller som byggts är:

- Modell med ram och hytt. Består av två kroppar - ram och hytt, som är kopplade till varandra via isolatorer.
- Modell med fast monterad hytt. Hytten är fast monterad på ramen, utan isolatorer.

3.3 Mått och data för modeller
De modeller som beskrivs nedan är beroende av indata i form av mått, styvheter, dämpkonstanter och så vidare. Dessa har i de flesta fall hämtats från en detaljerad datormodell av hjullastaren L150E, vilken är skapad av Volvo Wheel Loaders och implementerad i programvaran ADAMS.

3.4 Kroppsmodell
En kroppsmodell, här kallat massblock, har krafter som insignaler och ger acceleration, hastighet och position för kroppens tyngdpunkt, G, som utsignaler. Kroppsmodellen visas i Fig. 17. Ett fixt koordinatsystem med koordinaterna (x,z,θ) anger läget för tyngdpunkten. Vinkeln θ är kroppens vinkel mot planet och kallas pitchvinkel.
För ramen utgörs krafterna $F_{wfx}, F_{wrz} av de vertikala däckskafterna, F_{wfx}, F_{wrz} är dragkrafterna och F_c krafterna från hytten. Ekvationerna för massblocket ställs upp enligt:

\[
\ddot{x} : F_{wfx} + F_{wrz} - F_{cfx} - F_{crx} = M \ddot{x}
\]

\[
\ddot{z} : F_{wfx} + F_{wrz} - F_{cfz} - F_{crz} - Mg = M \ddot{z}
\]

\[
\dot{\theta} : -\gamma L (F_{cfz} + F_{crz}) - \kappa L (F_{wfx} + F_{wrx}) - \lambda L F_{wfx} + (1 - \lambda) L F_{wrz} + \alpha D F_{cfz} - (1 - \alpha) D F_{crz} = J \ddot{\theta}
\]

\[\Leftrightarrow\]

\[
\ddot{x} := \ddot{x} = \frac{1}{M} [F_{wfx} - F_{wrx} - F_{cfx} - F_{crx}]
\]

\[
\ddot{z} := \ddot{z} = \frac{1}{M} [F_{wfx} + F_{wrz} - F_{cfz} - F_{crz} - Mg]
\]

\[
\dot{\theta} := \dot{\theta} = \frac{1}{J} [\gamma L (F_{cfz} + F_{crz}) - \kappa L (F_{wfx} + F_{wrx}) - \lambda L F_{wfx} + (1 - \lambda) L F_{wrz} + \alpha D F_{cfz} - (1 - \alpha) D F_{crz}]
\]
3.5 Fjädermodeller

Hytten är kopplad till ramen via fyra stycken upphängningselement, så kallade isolatorer enligt Fig. 18. De finns i flera varianter och är tillverkade helt i gummi eller av en gummiblandning tillsammans med viskos silikonolja. Isolatorerna har fjädrande och dämpande egenskaper som minskar fortplantningen av vibrationer från ramen till hytten.

Någon exakt modell av isolatorerna finns i dagsläget inte tillgänglig då dess funktion är komplext och beroende av många parametrar såsom t.ex. deformation, frekvens och temperatur.

Isolatorerna modelleras som fjäder- och dämparelement i vertikal- och radialled. Det har tagits fram två olika modeller av isolatorns funktion i vertikalled och en för funktionen i longitudinal (radial) led. I samtliga modeller har antagande gjorts om att vinklarna för de båda kropparna, θ och ϕ är små.

L150E-isolatorernas hystereskurva för vertikalled har mätts upp i testlabb enligt gul och lila kurva i Fig. 19. Efter implementering i Simulink har det visat sig att användning av hystereskurvan ger stabilitetsproblem, varför denna istället approximerats med en medelkurva (blå kurva i Fig. 19).
3.5.1 Linjär vertikal isolatormodell
I denna modell, vilken visas i Fig. 20, liknas isolatorns funktion i vertikalled med en linjär fjäder parallell med en viskös dämpare. Styvhet och dämpkonstant har fätts ur ADAMS-modellen. En lokal linjärisering av medelkurvan i Fig. 19 eller en olinjär styvhet baserad på medelkurvan hade också varit möjlig, men mätdata för denna fanns inte tillgänglig vid tidpunkten för simuleringarna.
Fig. 20 Linjär vertikal modell av isolator

Nedan visas ekvationerna för den linjära vertikala fjädermodellen.

\[\begin{align*}
I : & \quad -k(w' - z') = F_I \\
II : & \quad -c(w' - z') = F_{II} \\
F & = F_I + F_{II} \\
w' & = w - L_u\phi \\
w' & = \dot{w} - L_u\dot{\phi} \\
z' & = z - L_l\theta \\
\dot{z}' & = \dot{z} - L_l\dot{\theta}
\end{align*} \]

\(L_u \) och \(L_l \) är endimensionella vektorer från övre respektive under masskroppens tyngdpunkt till fjäderelementets fästpunkt. \(L_l\theta \) är den vertikala sträckan på grund av vinkeln \(\theta \).

3.5.2 Olinjär vertikal modell av hyttisolator

Som framgår av Fig. 19 ovan är isolatorerna i vertikal och olinjära med avseende på deformation. Funktionen är dessutom olinjär med avseende på frekvens och temperatur. En noggrannare modell av isolatorns egenskaper i vertikal och linjärmodeller visas i Fig. 21 och består...
av en olinjär fjäder (I) parallellkopplad med en linjär fjäder (II) i serie med en viskös dämpare (III) och ser ut enligt.

Fig. 21 Olinjär vertikal modell av hyttsolatorer

Ekvationerna för den noggrannare modellen ställs upp enligt nedan.

\[
\begin{align*}
I & : k_I (z' - w') = F_I \\
II & : k_{II} (z' - u') = F_{II} \\
III & : c(u' - \dot{w}') = F_{III} \\
IV & : F_{II} - F_{III} - mg = \ddot{m}u' \\
w' &= w - L_u \phi \\
\dot{w}' &= \dot{w} - L_u \dot{\phi} \\
z' &= z - L_i \theta \\
\dot{z}' &= \dot{z} - L_i \dot{\theta} \\
F_u &= F_I + F_{III} \\
F_I &= -(F_I - F_{II})
\end{align*}
\]

Kraften som påverkar den övre massan med koordinaterna \((x_u, w, \phi)\) är \(F_u\), medan den undre massan med koordinaterna \((x,z,\theta)\) påverkas av \(F_I\).
Några simuleringar med denna har inte gjorts och funktionen har därför inte validerats eller jämförts med den enklare modellen.

3.5.3 **Linjär horisontell isolatormodell**

Denna isolatormodell fungerar i princip som den linjära vertikala modellen. Uppgifter för styrhet och dämpkonstant kommer även i detta fall från ADAMS-modellen. Modellen visas i Fig. 22 och dess ekvationer ställs upp nedan.

$$
I : -k(x'_u - x') = F_i \\
II : -c(\ddot{x}'_u - \ddot{x}') = F_ii \\
F = F_i + F_{ii} \\
x'_u = x_u - H_u \phi \\
\dot{x}'_u = \ddot{x}_u - H_u \dot{\phi} \\
x' = x + H_i \theta \\
\dot{x}' = \ddot{x} + H_i \dot{\theta}
$$

H_u och H_i är vertikala avståndet från övre respektive undre masskroppens tyngdpunkt till fjäderelementets fästpunkt. $H_i \theta$ utgör det horisontella läget orsakat av vinkeln θ.

3.6 **Modell med fast monterad hytt**

En förenklad modell av fordonet utgörs av ram och hytt fast förbundna utan isolatorer enligt Fig. 23. Hytten kan därför inte röra sig relativt ramen. Ram tillsammans med hytt utgör ett massblock med masscentrum G och kan röra sig vertikal- och rotationsled på
grund av hjulens vertikala fjädring (fjädringen för hjulen beskrivs i 3.9.2). Ett kinematiskt
samband beskriver hur en punkt, G', placerad i förarens bröstkorg, rör sig relativt
omgivningen.

![Diagram](image)

Fig. 23 Fordonsmodell med hytt fast fixerad i ramen

De kinematiska ekvationerna ställs upp nedan.

$$
\begin{align*}
\vec{r}_{G'} &= \vec{r}_G + \vec{r}_{G/G}' \\
\vec{\dot{r}}_{G'} &= \vec{\dot{r}}_G + \vec{\dot{r}}_{G/G}' \\
\vec{\ddot{r}}_{G'} &= \vec{\ddot{r}}_G + \vec{\ddot{r}}_{G/G}'
\end{align*}
$$

$$
\begin{align*}
\vec{r}_{G/G}' &= \begin{bmatrix} r_z \sin \theta + r_x \cos \theta \\
 r_z \cos \theta - r_x \sin \theta \end{bmatrix}^T \begin{bmatrix} \dot{x} \\
 \dot{z} \end{bmatrix} \\
\vec{\dot{r}}_{G/G}' &= \begin{bmatrix} (r_z \cos \theta - r_x \sin \theta) \dot{\theta} \\
 (-r_z \sin \theta - r_x \cos \theta) \dot{\theta} \end{bmatrix}^T \begin{bmatrix} \dot{x} \\
 \dot{z} \end{bmatrix} \\
\vec{\ddot{r}}_{G/G}' &= \begin{bmatrix} (r_z \cos \theta - r_x \sin \theta) \ddot{\theta} - (r_z \sin \theta + r_x \cos \theta) \dot{\theta}^2 \\
 (-r_z \sin \theta - r_x \cos \theta) \ddot{\theta} - (r_z \cos \theta - r_x \sin \theta) \dot{\theta}^2 \end{bmatrix}^T \begin{bmatrix} \dot{x} \\
 \dot{z} \end{bmatrix}
\end{align*}
$$

r_z,r_x konstanta $\Rightarrow \dot{r}_z = \dot{r}_x = \ddot{r}_z = \ddot{r}_x = 0$

approximation θ liten $\Rightarrow \sin \theta \approx \theta, \cos \theta \approx 1$

$$
\Rightarrow \vec{\ddot{r}}_{G/G}' = \begin{bmatrix} (r_z - r_x \theta) \ddot{\theta} - (r_z \theta + r_x \theta) \dot{\theta}^2 \\
 (-r_z \theta - r_x \theta) \ddot{\theta} - (r_z - r_x \theta) \dot{\theta}^2 \end{bmatrix}^T \begin{bmatrix} \dot{x} \\
 \dot{z} \end{bmatrix}
$$
3.7 Modell med ram och hytt
Denna modell är byggd för att efterlikna den verkliga hyttupphängningen hos en hjullastare. Två massblock är kopplade till varandra via två horisontella och två vertikala fjädrar enligt Fig. 24. Ramens tyngdpunkts position, G, beskrivs som tidigare av koordinaterna (x,z,θ), medan hyttens tyngdpunkt, G', beskrivs av (x_u,w,φ). Positionen för G' och förarens bröst skiljer sig bara med någon decimeter, varför rörelsen i G' är ungefär densamma som för en förare sittande på en ofjärad sits.

![Diagram](image)

Fig. 24 Fordonsmodell bestående av två massblock kopplade via isolatorer

3.8 Modell med ram, hytt och sits
Denna modell ser ut som föregående med skillnaden att föraren är placerad på en vertikalt fjädrande sits enligt Fig. 25.
Fig. 25 Fordonsmodell bestående av två masskroppar kopplade via isolatorer samt förare på vertikalt fjädrande sits

Sitsen är fixerad i hytten i horisontalled, men kan röra sig i vertikalled. Koordinaterna \((x_s, w_s, \phi)\) anger positionen för förarens bröstkorg och dess rörelse beskrivs enligt ekvationerna nedan. Eftersom sitsen är fixerad i rotationsled är vinkeln \(\phi\) densamma som för hytten.

\[
\dot{w}_s : -k(w_s - w_0) - c\dot{w}_s - m_{\text{seat}} g = m_{\text{seat}} \ddot{w}_s
\]
\[
k w_0 - m_{\text{seat}} g = 0
\]
\[
\Rightarrow
\]
\[
\dot{w}_s : -k w_s - c\dot{w}_s = m_{\text{seat}} \ddot{w}_s
\]

Den verkliga sitsen skiljer sig från sitsmodellen bland annat genom att fjädern är monterad horisontellt via ett länkage, medan den i modellen är monterad vertikalt. Fjäderstyrheten är därmed inte nödvändigtvis densamma. Det är känt att den modellerade sitsen tillsammans med förare, \(m_{\text{seat}}\), väger 88 kg och mätningar har visat att systemet sits, förare och fjäder har en egenfrekvens om 1,3 Hz. Med dessa indata har fjäderkonstanten

\[
k_{\text{seat}} \text{ tagits fram enligt } \omega = \sqrt{\frac{k_{\text{seat}}}{m}} = 2\pi f \Rightarrow k_{\text{seat}} = m(2\pi f)^2 = 88(2\pi 1,3)^2 = 5871 \left[\frac{N}{m} \right].
\]
Den kritiska dämpningskonstanten, c_{cr}, fås då dämpningsfaktorn, $\zeta = 1$ och innebär att en transient störning dämpas så att inga eftersvängningar förekommer. Dämpkonstanten

$$c_{cr} = 2mp$$

där $p = \sqrt{\frac{k}{m}}$. Detta ger $c_{cr} = 2m\sqrt{\frac{k}{m}} = 2\sqrt{km} = 1437\left[\frac{Ns}{m}\right]$. En dämpningsfaktor på 0.7 är rimlig, vilket ger sitsdämpningen $c_{seat} = \zeta c_{cr} = 1000\left[\frac{Ns}{m}\right]$.

I horisontalled beskrivs sitsens rörelse av kinematiska samband enligt nedan. Konstanten 0.06 anger det horisontella avståndet mellan sitsens och hytterns tyngdpunkt.

\[
x_s = (\omega_s - \omega) \sin \phi + x_u \cos \phi - 0.06 \cos \phi
\]

\[
\dot{x}_s = (\dot{\omega}_s - \dot{\omega}) \sin \phi + (\omega_s - \omega) \dot{\phi} \cos \phi + \dot{x}_u \cos \phi - x_s \dot{\phi} \sin \phi + 0.06 \dot{\phi} \sin \phi
\]

\[
\ddot{x}_s = (\ddot{\omega}_s - \ddot{\omega}) \sin \phi + 2(\dot{\omega}_s - \omega) \ddot{\phi} \cos \phi + (\omega_s - \omega)(\dddot{\phi} \cos \phi - \dot{\phi}^2 \sin \phi) + \ddot{x}_u \cos \phi - 2 \dot{x}_u \dddot{\phi} \sin \phi - x_u (\dot{\phi} \sin \phi + \dddot{\phi}^2 \cos \phi) + 0.06(\dddot{\phi}^2 \cos \phi + \dot{\phi} \sin \phi)
\]

\[
\phi \text{ liten } \Rightarrow \sin \phi \approx \phi, \cos \phi \approx 1
\]

\[
x_s = (\omega_s - \omega) \phi + x_u - 0.06
\]

\[
\dot{x}_s = (\dot{\omega}_s - \dot{\omega}) \phi + (\omega_s - \omega) \dot{\phi} + \dot{x}_u \dddot{\phi} + 0.06 \dddot{\phi}
\]

\[
\ddot{x}_s = (\ddot{\omega}_s - \ddot{\omega}) \phi + 2(\dot{\omega}_s - \dot{\omega}) \dddot{\phi} + (\omega_s - \omega)(\dddot{\phi} - \dot{\phi}^2 \phi) + \dddot{x}_u \cos \phi - x_u (\dot{\phi} \phi + \dddot{\phi}^2) + 0.06(\dddot{\phi}^2 + \dddot{\phi})
\]

Sitsblocket ger ett bidrag till rotationströgheten för hytten. Bidraget varierar aningen beroende på sitsens position, men storleksmässigt är variationen försumbar. Den nya trögheten blir $I_{cabin,ny} = I_{cabin} + m_{seat}d^2$ där d är avståndet mellan hytterns och sitsens tyngdpunkt. Måttuppgifter från en modell ur ADAMS ger

\[
d = \sqrt{0.06^2 + 0.078^2} = 0.0984 \Rightarrow md^2 = 8.66\left[kgm^2\right]
\]

vilket kan jämföras med hytterns tröghet, $I_{cabin} = 6723.5\left[kgm^2\right]$.

31
3.9 Hjul

Hjulen fyller flera funktioner hos fordonet. De överför kraft till marken, dels då de överför momentet på hjulaxlarna till en framåtdrivande kraft, dragkraft, och dels då de överför sidokrafter då fordonet svänger. Samtidigt fungerar de som fjädring och stötdämpning.

3.9.1 Hjul

Det finns ett flertal olika modeller som syftar till att beskriva de fysikaliska egenskaperna hos däcken, var och en med sina förtjänster och tillkortakommanden. Dessa kan delas in i fyra kategorier,

I, empiriska modeller, byggda enbart från experimentella data. Modellen anpassas med hjälp av regressionsteknik efter data från fullskaliga däcktester.

IV, komplexa fysikaliska modeller. Här används t.ex. FEM-modeller för att beskriva däckens egenskaper.

Valet av däcksmodeller styrdes av två faktorer, de modeller som fanns givna i litteraturen och tillgången, eller snarare bristen på tillgänglig däcksdata. Med de däcksdata som gått att uppbringa var det mest lämpligt att bygga en relativt enkel modell som behöver lite indata. Några parametervärden har ändå uppskattats eller anpassats efter mätresultat.

3.9.2 Vertikalmodell

I vertikalled modelleras däcken som en linjär fjäder parallellt med en viskös dämpare. Här används den enkla linjära vertikala modellen av isolatorerna enligt Fig. 20. Fjäder- och dämpkonstant för däcken kommer från modellen i ADAMS. Vertikal dämpning, \(c \), är \(5000 \, [\text{Ns/m}] \) och styvhet \(k \), är \(1.13 \times 10^6 \, [\text{N/m}] \).
3.9.3 Drivning
Avseende framdrivning påverkas hjulet av vridmomentet T från drivaxeln enligt Fig. 26. Detta ger upphov till en rotationsacceleration och en dragkraft parallell med underlaget, F_d, i kontaktytan mellan däck och underlag. Dragkraften resulterar i en kraft, F_a, verkande i navcentrum, vilken accelererar fordonet. Eftersom hjulet är fäst i fordonet är dess markparallella acceleration i stort sett densamma som ramens tyngdpunktss (den är inte exakt lika stor på grund av ramens rotationsacceleration).

Fig. 26 Modell av krafterna som påverkar ett hjul

Ekvationerna för hjulet i Fig. 26 ställs upp enligt nedan.

\[
\begin{align*}
\dot{\mathbf{O}}: T - F_d r_e &= J_{\text{wheel}} \dot{\omega} \\
\bar{x}': -F_a + F_d - m_w g \sin \beta &= m_w \bar{x}' \\
\bar{z}': F_N - m_w g \cos \beta &= m_w \ddot{z} \\
x' &= x \cos \beta + z \sin \beta
\end{align*}
\]

3.9.4 Slip och skid
Hjul som inte påverkas av drivande eller bromsande moment uppfyller rullvillkoret $v = r_e \omega$. Det innebär att däckets kontaktyta hastighet relativt underlaget är noll. Ett annat sätt att formulera detta är med hjälp av hastighetsdifferensen $v_S = v - r_e \omega = 0$. v_S kallas sliphastighet.

Hjul som påverkas av ett yttre moment uppfyller ej rullvillkoret, vilket innebär att däckets kontaktyta rör sig i förhållande till marken. Vid drivning roterar hjulen fortare än fordonets hastighet framåt, $v_s = v - r_e \omega < 0$ och vid bromsning är $v_s > 0$. Fallet drivning då $v_s < 0$ kallas slip och bromsning då $v_s > 0$ kallas skid.

En dimensionslös storhet på slip och skid fästs genom att dividera v_s med $r_e \omega$ eller v. I [17] föreslås att slip och skid särskiljs och definieras enligt
slip = -\frac{v_r}{r_\omega}, \quad skid = \frac{v_r}{v}

medan SAE (Society of Automotive Engineers) använder endast en definition av slip och skid. Skid är då ett fall av slip då slipvärdet har omvänt tecken. SAEs definitionen av slip är följande:

\[slip = \kappa = -\frac{v_r}{v} = \frac{r_\omega}{v} - 1 \]

Härefter används endast SAE-definition av slip om inget annat anges.

Slip anges ofta i procent. Lägsta möjliga slipvärde vid framdrivning uppkommer vid rullning då rotationshastigheten \(r_\omega \) och hastigheten \(v \) är lika stora, varvid slipet blir noll. Matematiskt sett ger slipdefinitionen division med noll då \(v=0 \) och slipet är i det fallet oändligt. Slipdefinitionen ovan går därför inte att använda vid låga hastigheter, varför en annan slipdefinition då får användas. Om fordonet skidar, dvs. \(v_s < 0 \), ligger slipvärdet mellan 0% då rullning sker, och -100% som inträffar vid bromsning med låsta hjul, \(v \neq 0 \), \(\omega=0 \).

3.9.5 Dragkraft \(F_d \)

Dragkraften som verkar i kontaktytan mellan däcket och underlaget, \(F_d \), beror på normalkraften \(F_N \), friktionen mot underlaget samt slipet. Dragkraftens beroende av slipet har ett principutseende enligt Fig. 27.
Vid lågt slip är dragkraften proportionell mot slipet, \(F_d = F_{d1} = C_F \kappa \) där \(C_F \) är longitudinell slipstyvhet [N]. Vid det kritiska slipvärdet \(i_c \) (ungefär 3 %) övergår \(F_d \) i en olinjär funktion \(F_{d2} \). För att efterlikna principutseendet på dragkraftkurvan har ytterligare en dragkraftsfunktion \(F_{d3} \) skapats, vilken är aktiv då \(i_{c2} < |\kappa| < i_c \). Gränsen \(i_{c2} \), är satt där dragkraften antar största värden, vilket oftast är vid ca 20 % slip.

\[
F_{d1} = C_F \kappa, \quad |\kappa| < i_c \\
F_{d2} = F_z \mu_s \left[1 - \frac{F_z \mu_s}{C_F 4 |\kappa|} \right] \frac{|\kappa|}{\kappa}, \quad i_c < |\kappa| < i_{c2} \\
i_c = \frac{F_z \mu_s}{2 C_F} \\
F_{d3} = \left\{ \begin{array}{ll}
\mu_s F_z \left[1 - \frac{\mu_s F_z}{C_F 4 i_{c2}} \right] + & \\
& \frac{F_z \left(\mu_s - \mu_i \left[1 - \frac{\mu_s F_z}{C_F 4 i_{c2}} \right] \right)}{1 - i_{c2}} (|\kappa| - i_{c2}) \left[\frac{|\kappa|}{\kappa} \right], \quad |\kappa| > i_{c2}
\end{array} \right.
\]

Fig. 27 Principutseende för dragkraften \(F_d(\kappa) \)
3.9.6 Slipgenerering

Då fordonshastigheten \(v \) är skiljd från noll fungerar slipdefinitionen enligt SAE. Den används då hastighet \(|v| \geq v_{\text{low}} \), där \(v_{\text{low}} \) är godtyckligt vald till 0,05 m/s.

\[
\kappa = -\frac{v_r}{v} = \frac{r_c \omega - v}{v} = \frac{r_c \omega}{v} - 1
\]

I kraftgenererande mening bör slipet ha värden mellan -1 och 1, men enligt definitionen kan \(\kappa \) anta värden betydligt större än ett. En begränsning på slipvärdet har därför lagts in enligt \(\kappa = \min[\max(\kappa, -1), 1] \)

varvid \(-1 \leq \kappa \leq 1\).

Vidare antar slipet samma värde i både fram och backriktning dvs. \(\kappa(-v, -\omega) = \kappa(v, \omega) \). Det innebär att färdriktningen måste tas i beaktande för att dragkraften ska verka i rätt riktning.

3.9.7 Slip vid låg hastighet

Om \(|v| < v_{\text{low}} \) används istället en annan slipfunktion, här benämnd \(\kappa_{\text{low speed}} \). För studier av växlingskomfort är det visserligen fullt möjligt att låta modellen starta med en initial hastighet så att slipfunktionen \(\text{slip} \) kan användas, men för generell användning i simuleringsmodellen och för studier av växlingskomfort vid riktningsändring behöver fordonet kunna starta från stillastående och byta riktning. Inledningsvis var det svårt att finna litteratur som behandlade slip vid låg hastighet, varvid ett flertal mer eller mindre sofistikerade angreppssätt testades.

3.9.8 Insignaler för utvärdering av slipmodeller

För att kunna testa däcksmODELLENS funktion behövs lämpliga insignaler. DäcksmODELLEN har som insignaler fordonshastighet, normalkraft och vridmoment. Även friktionskoefficienterna kan varieras. Fordonshastigheten fås som återkoppling från fordonsmODELLEN, normalkraften har satts konstant med värdet 260 kN och motsvarar ungefär tyngden för en olastad L150E, dvs. den totala normalkraften. Marken anses vara homogen med statisk friktionskoefficient om 0.6 och dynamisk om 0.5.

Vridmomentets toppnivå har efter jämförelse med uppmätt vridmoment satts till för L150E rimligt värde. Just vridmomentet är den enda variabla insignalen som använts för utvärdering av däcksmODELLEN och det ser ut enligt Fig. 28 nedan. Stegsignalen kan liknas vid en förare som efter en sekund trampar gasen i botten och efter sju sekunder släpper gasen helt, medan rampen kan tänkas vara en förare som ger mer och mer gas allt eftersom fordonshastigheten ökar. Därefter håller föraren konstant gas mellan två och tre sekunder, lätta på gasen mjukt och efter fyra sekunder lägger i backen. Därefter upprepar han i stort sett samma procedur.
Fig. 28 Vridmomentsinsignaler [Nm] för funktionstest av däcksmodeller. Ramper (t.v) och steg (t.h)

Den resulterande fordonshastigheten och hjulrotationshastigheten med ovanstående insignaler bör se ut enligt Fig. 29.

Fig. 29 Resulterande hastighet (blå) och rotationshastighet (grön) med ramper respektive steg som insignal
3.9.9 Hjulmodell med två slipfunktioner

Denna modell skapar slipet och därmed dragkraften från två olika slipfunktioner Vid hastigheter överstigande \(v_{low}\) används slipdefinitionen enligt SAE. Vid låga hastigheter, understigande \(v_{low}\), används slipfunktionen \(\kappa_{lowspeed}\). Denna bygger på att däcket vid låg hastighet kan liknas vid en fjäder. Då drivning påbörjas måste fjädern spännas upp innan den kan leverera dragkraft. Funktionen visas i Fig. 30.

\[\sigma = \frac{C_{Fx}}{C_{Fx}} \approx \frac{a}{2}\]

\(u\), med enhet [m], är deformation av däcket som uppkommer då ett vridmoment verkar i navet och däcket varvid däckets sida och mönster deformeras. \(\sigma_\kappa\) är relaxationslängd [m], \(C_{Fx}\) longitudinell slipstyrhet per längdenhet [N] och \(C_{FX}\) longitudinell däckstyrhet [N/m] och \(a\) är kontaktlängd [m] mellan däck och underlag. \(\sigma_\kappa\) kan enligt [14] approximeras med halva kontaktlängden.

Vid låg hastighet, \(v \approx 0\), har vi

Fig. 30 Mekanisk modell för fjäderliknande däckmodell

De mekaniska sambanden för denna modell formuleras enligt [6]
och u är i princip integrerande, varvid däcket kan liknas vid en fjäder med styvheten C_{Fx}.

\[
\frac{du}{dt} = -v_s - \left| \frac{u}{\sigma} \right| r \omega - \left| \frac{u}{\sigma} \right| r \omega \Rightarrow u = \int r \omega dt
\]

\[
F_s = C_{Fx} \kappa' = C_{Fx} \frac{u}{\sigma} \Rightarrow F_s = C_{Fx} \frac{C_{Fx}}{C_{Fx}} \int r \omega dt = C_{Fx} \int r \omega dt
\]
Vid hög hastighet och lågt slip gäller $v_s \approx 0$ varvid

$$\frac{du}{dt} = -v_S - \left| v \right| \frac{u}{\sigma_x} \approx -\left| v \right| \frac{u}{\sigma_x}$$

$$F_x = C_{Fx} \kappa' = C_{Fx} \frac{u}{\sigma_x} \Rightarrow F_x = -\frac{C_{Fx}}{\left| v \right|} \frac{du}{dt}$$

funktionen kan liknas vid en dämpare med dämpkonstant C_{Fx}.

$k_{lowspeed}$ aktiveras vid start från hastighet lägre än v_{low} eller då hastigheten sjunker till v_{low}. Vid start från låg hastighet ges $k_{lowspeed}$ startvärde, $k_{lowspeed, init}$, värdet noll. I det andra fallet vid övergång från κ till $k_{lowspeed}$ sätts $k_{lowspeed, init}$ till det värde som κ antar enligt

$$k_{lowspeed, init} = \kappa = -\frac{v_S}{v}$$

Simulering med denna ansats visar att det uppkommer slip vid övergången, vilket inte är fallet i praktiken. För att komma till rätta med detta skalas $k_{lowspeed, init}$ med en faktor 0,8, vilken har bestämts på experimentell väg. Således lyder $k_{lowspeed, init} = -0,8 \frac{v_S}{v}$. Därmed fås en övergång utan att slip inträffar.

Problem uppstår då hastigheten når v_{low} och växling från $k_{lowspeed}$ till κ sker, varvid en diskontinuitet i slipvärdet uppkommer. Detta syns tydligt i Fig. 31. Diskontinuiteten gör att det uppkommer spikar i dragkraften, vilket även resulterar i spikar för accelerationen. Detta visas i Fig. 32 och Fig. 33.

Problemet uppstår alltså vid den låga hastigheten 0.05 m/s, vilken i stort sett bara passeras vid start, stopp och riktningsändring. För alla andra hastigheter fungerar modellen bra.

Försök har gjorts för att eliminera diskontinuiteten, men utan framgång. För att undvika diskontinuiteten har istället ett annat angreppssätt prövats, där endast en slipfunktion används.

Fig. 31 Slip för körcykeln med ramp (t.v) och steg (t.h) i ingående vridmoment som insignal
Fig. 32 Hjulmodell av fjädertyp vid låg hastighet. Insignalen är en ramp i ingående vridmoment. Vridmoment (ö.t.v) resulterar i rotations- och fordonshastighet (ö.t.h). Spikarna i vridmomentet ger upphov till störningar i rotationshastigheten vid riktningsändring (n.t.v) och startförlopp (n.t.h)
3.9.10 Hjulmodell med slipgenererande enligt fjäder/dämparmodell

Här fungerar däcket för alla hastigheter som en fjäder med slipgenererandet enligt $k_{\text{low speed}}$ från föregående modell. Då endast en slipfunktion används undviks den diskontinuitet som uppstår vid övergång mellan slipfunktionerna och funktionen som sätter initialvärdet $k_{\text{low speed, init}}$ behövs inte heller.

Vid låg hastighet fungerar slipfunktionen som integrator av sliphastigheten vilket kan ge upphov till orimligt stor däckdeformationen. Detta angrips genom att begränsa deformationsderivatan då hastigheten är låg och deformationen antagit ett godtyckligt värde u_{limit}. Implementeringen ser ut enligt

\[
\begin{align*}
 \text{if } \ v < v_{\text{low}} & \ \& \ u > u_{\text{limit}} \\
 \frac{du}{dt} & = 0 \\
 \text{else} \\
 \frac{du}{dt} & = -v_s - \left| v \right| \frac{u}{\sigma_k} \\
 \text{end}
\end{align*}
\]
Vid stegändring i ingående vridmoment som insignal uppkommer stora svängningar i slipet och fortplantar sig till dragkraften. Vilket visas i Fig. 34.

Fig. 34 Stegsvar. Slip för hela körcyklern (ö.t.v), dragkraft för hela körcyklern (ö.t.h), startförloppet (n.t.v) och momentavslaget (n.t.h)
De stora svängningarna i utgående vridmoment som uppkommer vid stegändring av ingående vridmoment resulterar i svängningar för hjulens rotationshastighet och i viss mån även för fordonshastigheten. Detta visas i Fig. 36.

Fig. 35 Funktionstest av hjulmodell av fjäder/dämpartyp. Steg i ingående vridmoment som insignal, fordonshastighet (blå) och hjulens rotationshastighet (grön). Hel körcykel (ö.t.v), startförloppet (ö.t.v) och momentavslag (nedre).

Även med ramp i ingående vridmoment som insignal uppkommer stora svängningar i utgående vridmoment. Detta resulterar i svängningar även för hjulens rotationshastighet och detta visas i Fig. 35.
Fig. 36 Funktionstest av hjulmodell av fjäder/dämpartyp. Ramp i ingående vridmoment som insignalen, fordonshastighet (blå) och hjulens rotationshastighet (grön). Hel körcykel (ö.t.v), startförloppet (ö.t.v) och riktningsändring (nedre).
3.9.11 Hjulmodell med slipgenerering enligt fjäder/dämpare med ytterligare dämpning

För att minska svängningarna i föregående modell (Fig. 35) har ytterligare en dämpning införts parallellt enligt Fig. 37.

![Diagram of tire model with additional damper](image)

Fig. 37 Däckmodell enligt fjäder med ytterligare dämpare

Ekvationerna för denna skiljer sig från föregående modell genom att κ har ersatts med κ'.

\[
\kappa' = \frac{u}{\sigma_\kappa} + u_1
\]

\[
u = \frac{1}{100\sigma_\kappa} \frac{du}{dt}
\]

\[
\kappa' = \frac{u}{\sigma_\kappa} + \frac{1}{100\sigma_\kappa} \frac{du}{dt}
\]

Konstanten $\frac{1}{100\sigma_\kappa}$ är bestämd på experimentell väg. Införandet av dämparen har stor påverkan på slipet, vars svängningar dämpas effektivt. Med steg i ingående vridmoment som insignal fås utgående vridmoment enligt Fig. 38.
Fig. 38 Stegsvar. Dragkraft för hela körcykeln (ö.t.v), startförloppet (ö.t.h) och momentavslaget (nedre).
Steget i ingående vridmoment resulterar i rotationshastighet för hjulen och fordonshastighet enligt Fig. 40.

Fig. 39 Insignalen är ett steg i ingående vridmoment. Fordonshastighet (blå) och hjulens rotationshastighet (grön). Hel körcykel (ö.t.v), startförloppet (ö.t.h) och momentavslag (nedre).

Även med ramp i ingående vridmoment som insignal dämpas svängningarna i utgående vridmoment effektivt. Det utgående vridmomentet resulterar i fordonshastighet och rotationshastighet enligt Fig. 39.
Fig. 40 Ramp som insignal. Fordonshastighet (blå) och hjulens rotationshastighet (grön). Hel köracykel (ö.t.v), startförloppet (ö.t.h) och riktningändring (nedre).
4 Resultat

De mätdata som använts för att utvärdera modellerna innehåller många accelerationskomponenter med annat ursprung än växling. I ett samtidigt utfört examensarbete [9] fann man det lämpligt att för växlingskomfortstudier filtrera accelerationssignalerna med ett fjärde ordningens bandpassfilter av butterworths typ med gränsfrekvenser 0.5 Hz och 10 Hz. För att kunna jämföra simuleringsmodellernas resultat med mätdata har samma filtrering använts på modellernas accelerationssignal. I mätningar har man med hjälp av en accelerometer mätt fordonsaccelerationen på två ställen – på ramen (ungefär i ramens tyngdpunkt) och i hytten bakom stolen.

4.1 Utvärdering av modellerna avseende växlingskomfort

En sammanfattning av utvärderingen följer nedan. Utvärderingen i sin helhet återfinns i bilaga 1.
Bortsett från originalmodellen har alla modeller vertikal däckfjädring. Beteckningen ”utan hjul” i figuren betyder att ingen longitudinell hjulmodell används. I figuren nedan anger grön kurva ryck för ramen.

4.1.1 Originalmodellen

I Fig. 41 visas mätdata och simuleringsresultat för uppväxling 2-3 med originalmodellen. De oscillationer för ryck och acceleration som syns i mätdata lyckas modellen inte frambringa och accelerationskurvans utseende skiljer sig betydligt från mätdata. I mätdata syns en tendens till att hyttens acceleration är aningen fördöjd gentemot ramens.

Topp till toppvärden för originalmodellens accelerations- och ryckkurvan verkar rimliga.

Fig. 41 Acceleration och ryck vid växling 2-3 för originalmodellen (t.v) och mätdata för L150E (t.h)

4.2 Hyttmodeller

Nedan visas en utvärdering av olika hyttmodeller för olika växlingar. Studera speciellt ram- och hyttaccelerationen - vilken däckmodell saknar betydelse i det här fallet.
4.2.1 Utvärdering hyttmodeller vid uppväxling 2-3

I Fig. 42 visas ram- och hyttacceleration vid uppväxling 2-3 för originalmodell och modeller med olika varianter på hytt.

![Graphs showing acceleration and jerk during passage 2-3 for different models](image)

Fig. 42 Acceleration och ryck vid växling 2-3 för originalmodell (ö.t.v), modell med hytt och sits (ö.t.h), hytt och sits med hårt dämpad horisontell isolator (n.t.v) och fast monterad hytt (n.t.h)

Ramaccelerationen för modellerna i Fig. 42 är snarlik och påverkas inte nämnvärt av tillförandet av hytt och sits.

Modellen med hytt och sits (ö.t.h) ger longitudinella oscillationer för hytten, vilka inte kan ses i mätdatan i Fig. 41. Om den longitudinella dämpningen för hytten (n.t.v) ökas markant uteblir hyttoscillationerna.

Modellen med fast monterad hytt resulterar i att ram- och hyttaccelerationen skiljer sig åt lite grann. Skillnaden orsakas av nickningen.

Modellen med ökad longitudinell hyttämpning (n.t.v) och modellen med fast monterad hytt ger i princip samma resultat.

Skillnaden mellan modellernas ram- och hyttacceleration är liten och ger inte nämnvärt bättre överensstämmelse med mätdata än originalmodellen.
4.2.2 Utvärdering av hyttmodeller vid nedväxling 2-1

I Fig. 43 Simulering av växling 2-1. Två modell med hytt och sits: (ö.t.v) och (ö.t.h) med halverade longitudinella hyttfjäderkonstanter. Modell med fast monterad hytt (n.t.v) och mätdata (n.t.h) visas nedväxling 2-1.

De kraftiga hyttoscillationer om ca 10 Hz som är tydliga i mätdata finns ej i modellen med fast monterad hytt. Modellen med hytt och sits har små oscillationer för hytten, men med frekvens som verkar vara ca 5 Hz. Frekvensen i grafen är dock ett resultat av filtreringen – den ofiltrerade hyttoscillationen har en frekvens om ca 14 Hz (se Bilaga 1). En hypotes är att denna skillnad gentemot mätdata beror på felaktig styvhet i modellen. Därför gjordes en simulering där den longitudinella hyttfjädringskonstanten sattes till hälften, vilket borde ge en egenfrekvens om ca 10 Hz. Resultatet blir inte heller i detta fall helt likt mätdata. Mätdatan visar att accelerationen för ram och hytt skiljer sig väsentligt vid växling 2-1. För övriga växlingar är skillnaden betydligt mindre. En modell som fångar upp skillnaden vore önskvärt, men ingen av de tillförda hyttmodellerna lyckas med det. Troliga orsaker är att indata till den longitudinala hyttfjädringen inte stämmer och att modellerna är för enkelt modellerade.
4.3 Hjulmodeller
Nedan visas en utvärdering av olika hjulmodeller för olika växlingar. Studera speciellt ramaccelerationen - vilken hyttmodell som använts har mycket liten betydelse.

4.3.1 Växling 2-3
I Fig. 44 och Fig. 45 visas resultatet för olika hjulmodeller och mätdata för uppväxling 2-3.

Resultatet för hjulmodellen med två slipfunktioner (dvs modell 3.9.9) skiljer sig inte nämnvärt från originalmodellen. Modellerna av fjäder/dämpartyp (modell 3.9.10 och 3.9.11) ger upphov till oscillationer med frekvens som liknar uppmätta resultat. Modellen utan ytterligare dämpning, (modell 3.9.10) nedre vänstra i Fig. 44, ger betydligt högre amplitud för accelerationer- och rycksignalen än uppmätta värden, medan den med ytterligare dämpning, (modell 3.9.11) nedre högra i Fig. 44, har lite för kraftig dämpning. Detta tyder på att det krävs injustering av hjulmodellens parametrar.
Fig. 45 Mätdata för växling 2-3 för L150E, tagna från två mätserier
4.3.2 Växling 1-2

I Fig. 46 och Fig. 47 visas simuleringsresultat för olika hjulmodeller och mätdata för växling 1-2.

Fig. 46 Simulering av växling 1-2 med originalmodell (ö.t.v), hjulmodell med två slipfunktioner (ö.t.h), hjulmodell fjäder/dämpare (n.t.v) och modell fjäder/dämpare med ytterligare dämpare (n.t.h)

Resultatet är detsamma som för växling 2-3 – originalmodellen och modellen med två slipfunktioner ger snarlika resultat, men skiljer sig betydligt i utseende mot mätdata. Principutseendet på kurvorna från de båda modellerna av fjäder/dämpartyp (modell 3.9.10 och 3.9.11) är betydligt mer likt mätdata. Den odämpade däckmodellen ger precis som i växling 2-3 väl stor amplitud på svängningarna.
4.3.3 Växling 3-4

I Fig. 48 och Fig. 49 visas simuleringsresultat för olika hjulmodeller och mätdata för växling 3-4.

Fig. 48 Simuleringsresultat för växling 3-4 med originalmodell (ö.t.v), hjulmodell med två slipfunktioner (ö.t.h), hjulmodell fjäder/dämpare (n.t.v) och modell fjäder/dämpare med ytterligare dämpning (n.t.h).
Simuleringsresultatet för modellerna är för växling 3-4 inte lika bra som vid tidigare växlingar. Ingen av modellerna lyckas återskapa svängningarna som syns i mätdata.

Fig. 49 Mätdata för växling 3-4 för L150E, tagna från två mätserier
4.3.4 Utvärdering avseende framdrivning och slirning

För att utvärdera däckmodellerna avseende slirande egenskaper används körcykeln grushög. Endast den senare delen, efter 16 sekunder är här av intresse. Statisk friktionskoefficient, \(\mu_p \), till underlaget är satt till 0.3 och dynamisk, \(\mu_k \), till 0.27. Vid tiden 15 sekunder hålls full gas och full fart på 4:ans växel. Gångmotståndet stegas kraftigt efter 16 sekunder varpå farten minskar och nedväxling sker, först till 3:an och efter 18.5s kick-down till 1:an. Fordonet står då i princip stilla. Fig. 50 visar hjulens rotationshastighet för modell med hjul av fjäder/dämpartyp och resultatet för modell utan hjul ("kuggstångslera") visas i Fig. 51.

Fig. 50 Utvärdering av hjulmodells slirande egenskaper. Hjulmodell av fjäder/dämpartyp møter kraftigt ökat gångmotstånd efter 16 sekunder. Se speciellt fordonshastighet (grön kurva) och hjulens rotationshastighet (mörkblå kurva)
Fig. 51 Kraftigt ökat gångmotstånd för modell utan hjul ("kuggstängslera")
Med hjulmodellen blir dragkraften efter kick-down större än friktionskraften mot underlaget och hjulen börjar slira efter 19 sekunder. Utan hjul uppkommer stora spikar i accelerationssignalen.

4.3.5 Injustering av parametrar

För att hjulmodellerna ska ge bättre resultat krävs injustering av parametrar som dämpning, relaxationslängd och slipstyvhet.

Relaxationslängden inverkar på frekvensen för hjulens insvängning. Utgångspunkten att relaxationslängden är halva längden på kontaktytan mot underlaget ger en relaxationslängd om 0.3 meter. Verifiering mot mätdata visar att detta ger för hög insvängningsfrekvens och det har visat sig att en relaxationslängd om 0.5 meter ger bättre överensstämmelse mot mätdata.

I Fig. 52 visas exempel på vad som händer om relaxationslängden ändras från 0.5m till 2m.

![Fig. 52 Växling 3-4 med hjulmodell av fjäder/dämpartyp med ytterligare dämpning. I vänstra grafen är relaxationslängden satt till 0.5m och i högra 2m. I övrigt är modellerna lika](image)

Andra parametrar för däcken som bör ses över är den longitudinella fjäderkonstanten, C_{SLIP}, den ytterligare dämpkonstanten och vertikal dämpning för däcken.
5 Slutsats

Författaren anser att den existerande drivlinan utan longitudinell hjulmodell inte räcker för att bedöma växlingskomfort.

Vid analys fann man i [9] att båda placeringarna av accelerometrarna i ramen respektive hytten är användbara för bedömning av växlingskomfort och ger lika bra resultat.

För att bedöma växlingskomfort med hjälp av Simulink behöver följande ändringar göras i simuleringsmodellen:

- Tillägg av hjulmodell av typen longitudinell fjäder/dämpare med ytterligare dämpning. Med denna modell fås bättre överensstämmelse mot mätdata, både vad gäller accelerations- och ryckkurvans principutseende och nivåer. Även i fallet med högt gångmotstånd då hjulen börjar slira ger denna däckmodell ett bra resultat.

Följande ändringar har också studerats, men bedöms inte behövas eller vara tillräckligt bra:

- Vertikalt avfjädrad sits. Ett tillägg av denna modell ger försumbar skillnad i acceleration och ryck gentemot modellen utan avfjädrad sits.
- Vertikalt och longitudinellt avfjädrad hytt. De olika hyttmodellerna fångar inte upp hyttens longitudinella egenfrekvenser som i extremfall finns i mätdata och inte heller den fördröjning av hyttaccelerationen som uppmätts.
- Fordonskroppen (ramen) vertikalt avfjädrad på däcken. Denna modell behövs inte då modell för hyttens rörelse inte finns.
6 Diskussion och felkällor

Den linjära isolatormodellen i horisontalled har brister. Som kan ses i simuleringsresultaten exciteras egenfrekvenser och ger upphov till hyttoscillationer med frekvens om ca 14 Hz, vilka ej har påträffats i mätningarna. De tydliga hytoscillationerna som syns i mätdata vid växling 2-1 lyckas modellen inte återskapa. Författaren anser att det finns två orsaker till detta:

- Isolatorerna är för enkelt modellerade. Framförallt är en bättre modell av isolatorernas egenskaper i horisontalled önskvärd.
- Indata till isolatorer och vertikal däckfjädring är förenklad eller felaktig. Framförallt indata till den longitudinella isolatormodellen ifrågasätts.

Vidare fungerar massblock och fjädrar bara för små vinklar θ, φ och därför inte vid t.ex. körning i uppförslätten. Möjligt är antagandet om små vinklar en begränsning även vid körning på plant underlag.

Den fördröjning av hyttaccelerationen som uppmätts kan ha annan orsak än vad som tagits hänsyn till i hyttmodellerna. En hypotes är att ramen flexar och bidrar till detta.

En modell blir aldrig bättre än dess indata tillåter. I fallet med däcken är mängden tillgänglig indata begränsad, varför det råder osäkerhet i modellernas funktion. Emellertid kan vissa parametrar bestämmas efter jämförelse med uppmätta accelerationssignaler.

Vid simulering av nedväxling är det svårt att få till samma förutsättningar som vid mättilfället varför amplituderna kan skilja mycket.

Alla oscillationer från mätdata fångas inte upp i simuleringsresultatet. Ett tänkbart bidrag till oscillationerna är att motor och transmission är upphängda i gummielement, vilket inte är modellerat i SimPow.
7 Framtid

Om växlingskomfort kan simuleras i drivlinemodellen kan utvecklingstiden för t.ex. styrkod förkortas. Nedan följer några tänkbara åtgärder för att förbättra komforten.

- Då lite däckdata har påträffats behövs mer indata från däckleverantörerna, eller från egna mätningar för att få bättre resultat från modellerna.

- Även om ramens acceleration är tillräcklig för att bedöma växlingskomfort i Simulink kan det tänkas vara intressant att ändå ägna tid åt att ta fram en bra modell och bra indata för isolatorerna. En modell som även kan användas i andra tillämpningar än växlingskomfortstudier och framförallt för programvaran ADAMS.

- För att få däckmodellen att fungera i alla situationer bör den förädlas och studier av [14] bör kunna ge intressanta uppslag. Ett förslag är att implementera en hastighetsberoende dämpning, vilket nämns i [14].
Bibliografi

[2] Björkman Jörgen, TUF

[3] Carlqvist Conny, TUF

[5] Eriksson Allan, WLO

[13] Norling Morgan, TUF

8 Bilaga 1 – Utvärdering av växlingar
Bortsett från originalmodellen har alla modeller vertikal däckfjädring. Beteckningen ’utan hjul’ över figurerna betyder att framdrivningsprincipen för modellen är ”kuggstångslera”.

8.1 Växling 2-3
I Fig. 53 till Fig. 57 nedan har accelerationskörcykeln använts för att simulera och bedöma växling två till tre. Simuleringsresultaten har jämförts med uppmätta data för en L150E, som visas i Fig. 58.

Fig. 53 Acceleration och ryck vid växling 2-3 för originalmodellen (t.v) och modell med vertikal däckfjädring, hytt och ram (t.h)

Fig. 54 Uppmätt acceleration och ryck vid växling 2-3 för L150E

Ramaccelerationen i modellerna i Fig. 53 är snarlikt. Däremot ger hyttmodellen oscillationer för hytten, vilket inte kan ses i mätdata i Fig. 54. Utseendet på kurvorna i Fig. 53 skiljer sig mycket från mätdata i Fig. 54.
Modellerna i Fig. 55 ger mycket lika resultat. Det visar att den i horisontalled överdämpade isolatormodellen ger i princip samma resultat som den stela hyttmodellen.

Fig. 55 Modell av SAE/fjäder vid lågfarttyp och hytt med sits (t.v) och modell med kuggstångslera (t.h)

I Fig. 56 ses igen oscillationerna i hytt- och sitsaccelerationen, vilka inte finns i mätkurvorerna. En möjlig orsak kan vara att den horisontella dämpkonstanten för isolatorerna i simuleringarna är för låg. De båda modellerna i Fig. 56 ger i vid uppväxling 2-3 i princip samma resultat men principutseendet på accelerations- och ryckkurvan är inte likt uppmätt resultat.

Fig. 56 Modell med ”kuggstångslera” och hytt med sits (t.v) och modell av av SAE/fjäder vid lågfarttyp och hytt med sits (t.h)
Simuleringsresultat från modeller där hjulen modelleras som fjäder/dämpare över hela hastighetsregistret visas i Fig. 57. Däckmodellen fjäder/dämpare (n.t.v) ger väl stora oscillationer jämfört med måtresultaten, medan modellen med ytterligare dämpning (till höger) verkar vara lite för hårt dämpad.

Mätdata från uppväxling 2-3 skiljer sig mellan olika mätningar enligt Fig. 58.
Fig. 58 Jämförelse av mätdata för växling 2-3 från olika mätserier med samma fordon

En sammanfattnings av resultaten för växling 2-3 följer här:

- De olika modellerna av fordonskropparna ger inte nöjaktigt resultat:
 - Modellen med fast monterad hytt fångar inte den skillnad mellan ram- och hyttacceleration som syns i mätdata.
• Framdrivningsprincip utan longitudinell hjulmodell och hjulmodell av typ fjäder vid låg hastighet är utseendemässigt inte lika måtdata.

• Hjulmodellerna fjäder/dämpare och fjäder/dämpare med ytterligare dämpning är däremot utseendemässigt lika måtdata, men en justering av dämpningskonstanten behövs för att amplituderna ska bli riktigt bra.
8.2 Växling 1-2
Simuleringsresultat och mätdata från uppväxling 1-2 framåt visas i Fig. 59 till Fig. 62 nedan.

Fig. 59 Växling 1-2. Modell med överdämpad hytt och sits samt fjäder/SAE däckmodell (t.v.) och fast monterad hytt med fjäder/SAE däckmodel (t.h)

Modellerna i Fig. 60 med hytt som är hårt dämpad i longitudinell led respektive med fast monterad hytt ger snarlika simuleringsresultat. I Fig. 60 nedan ses att modellerna utan hjul saknar de tydliga oscillationerna om ca 10 Hz som syns tydligt i mätdata. Däremot resulterar införandet av modellerna med hjul av fjäder/dämpartyp i oscillationer som är påfallande lika mätdata, både i amplitud och frekvens. I modellen med hjul är andra toppen större än första, vilket är fallet i några mätningar, men inte alla. Topp-till-toppvärden verkar rimliga för samtliga modeller i Fig. 59 och Fig. 60.
Fig. 60 Växling 1-2. Mätdata (ö.t.v), originalmodell (ö.t.h), modell utan hjul med fast monterad hytt (n.t.v) och med fast monterad hytt och hjul av fjäder/dämparetyp (n.t.h)

Den odämpade däckmodellen i Fig. 61 ger för stora svängningar, både i ryck- och accelerationssignalen. Amplituden hos dessa är betydligt större än vad uppväxling 1-2 från mätdata visar.

Mätdata från de olika mätillfällena visas i Fig. 62 nedan. Som synes är spridningen för accelerations- och ryckvärdena stor mellan de olika mätningarna, medan frekvensen på
oscillationerna i accelerationskurvan är ungefär densamma. I några mätningar är första toppen i accelerationskurvan störst medan andra toppen är högre i vissa mätningar.

Fig. 62 Jämförelse av acceleration och ryck vid växling 1-2 för olika mätserier med L150E. Relativt stor spridning

Sammanfattning för nedväxling 2-1:

- Modellerna utan hjul saknar de tydliga oscillationerna om ca 10 Hz som syns tydligt i mätdata
- Modellerna med hjul av fjäder/dämpartyp i oscillationer som är påfallande lika mätdata
8.3 Växling 3-4
Simuleringsresultat för uppväxling 3-4 visas i Fig. 63 och Fig. 64 och mätdata i Fig. 65. Simuleringsmodellerna ger vid växling 3-4 generellt lägre nivåer än mätdata på accelerations- och rycksignalerna.

Fig. 63 Modell med fjäder vid låg hastighet (ö.t.v), fjäder utan dämpning (n.t.v) och nedre till höger med 1/3 mindre dämpning än (ö.t.v) och mätdata (ö.t.h)

Fig. 64 Originalmodell (t.v) och mätdata (t.h) vid växling 3-4
Ingen av simuleringsmodellerna fångar upp oscillationerna som finns i mätdata och utseendet på kurvorna skiljer sig därför från mätsignalerna. I modellerna med fjäder/dämpardäck i Fig. 63 kan dock tendenser till oscillationer skymtas, medan originalmodellen i Fig. 64 inte visar några spår av dessa. Vidare kan ses att spridningen i mätresultaten är stor. Växling 3-4 är i praktiken knappt kännbar och det är föga troligt att den orsakar diskomfort för föraren. Växling 3-4 därför den växling som bör ägnas minst intresse.

Sammanfattning av simuleringarna och mätdata för växling 3-4:

- Amplituderna skiljer sig dels inom mätdata och mellan mätdata och simuleringar beroende på att körfallen varierar.
- Resultaten från modellerna utan longitudinell hjulmodell och med hjul av typen fjäder vid låg hastighet utseendemässigt olik mätdata.
- Resultaten från modellerna med fjäder/dämpare är utseendemässigt aningen bättre än de föregående modellerna, men skiljer sig betydligt från mätdata.

Fig. 65 Mätdata för uppväxling 3-4 med L150E

Ingen av simuleringsmodellerna fångar upp oscillationerna som finns i mätdata och utseendet på kurvorna skiljer sig därför från mätsignalerna. I modellerna med fjäder/dämpardäck i Fig. 63 kan dock tendenser till oscillationer skymtas, medan originalmodellen i Fig. 64 inte visar några spår av dessa. Vidare kan ses att spridningen i mätresultaten är stor. Växling 3-4 är i praktiken knappt kännbar och det är föga troligt att den orsakar diskomfort för föraren. Växling 3-4 därför den växling som bör ägnas minst intresse.

Sammanfattning av simuleringarna och mätdata för växling 3-4:

- Amplituderna skiljer sig dels inom mätdata och mellan mätdata och simuleringar beroende på att körfallen varierar.
- Resultaten från modellerna utan longitudinell hjulmodell och med hjul av typen fjäder vid låg hastighet utseendemässigt olik mätdata.
- Resultaten från modellerna med fjäder/dämpare är utseendemässigt aningen bättre än de föregående modellerna, men skiljer sig betydligt från mätdata.
8.4 Växling fram-back och back-fram

Simuleringsresultat och mätdata för riktningsändring fram-back och back-fram visas i Fig. 66. I mätningarna ändras riktning vid ganska stort gaspådrag (se motorvarvet) varför accelerations- och rycknivåerna blir stora, medan riktningsändring i simuleringsarna sker vid lågt gaspådrag. Resultaten går därför inte att jämföra. Det kan ändå vara av intresse att studera signalerna.

Körfallen är så olika för simuleringsarna och mätningarna att någon slutsats för växlingen ovan inte kan dras.
8.5 Utvärdering av hjulmodell vid växling 2-1

8.5.1 Snäll nedväxling

I Fig. 67 visas en kick-downväxling med lågt gaspådrag. Körfallen skiljer sig en del mellan mätningarna och simuleringen, varför kurvornas nivåer inte går att jämföra. Däremot kan utseendet på ramens acceleration och ryck studeras.

![Snäll nedväxling 2-1](image1)

Fig. 67 Snäll nedväxling 2-1. Resultat från två mätningar (överst) och simuleringsresultat med hjulmodellen fjäder/dämpare med ytterligare dämpare (nedre)

8.5.2 Hård nedväxling

I måtdata i Fig. 68 syns att ram och hyttacceleration skiljer sig betydligt. För utvärdering av hjulmodellen kan hyttaccelerationen ignoreras – studera således ramens acceleration och ryck.
Fig. 68 Hård nedväxling 2-1. Mätdata (övre och nedre till vänster) och hjulmodell fjäder/dämpare med ytterligare dämpning (n.t.h)

Resultaten från mätningarna och simuleringen skiljer sig framförallt i nivå, men även frekvensen på svängningarna.

Sammanfattning för utvärdering av hjulmodeller för nedväxling 2-1:
- Att amplituderna skiljer sig betydligt beror på att det varit svårt att få till samma körfall.
- En hypotes är att avvikelsen i frekvens beror på att modellen är lite för enkel.

8.6 Utvärdering av hyttmodell vid växling 2-1

I Fig. 69 framgår att ram och hyttacceleration i mätdata för nedväxling 2-1 skiljer sig betydligt. Hyttkurvan har oscillationer om ca 10Hz, vilka har sitt ursprung i egenfrekvens för isolatorer och hytt.
I Fig. 70 visas simuleringsresultat för samma växling. Observera att körfall skiljer sig mellan mätningar och simulering, varför kurvornas nivåer inte är direkt jämförbara.

De kraftiga hyttoscillationer om ca 10 Hz som är tydliga i mätdata finns ej i modellen med fast monterad hytt.
Modellen med hytt och sits har små oscillationer för hytten, men med frekvens som verkar vara ca 5 Hz. Frekvensen i grafen är dock ett resultat av filtreringen – den ofiltrerade hyttoscillationen har en frekvens om ca 14 Hz, vilket framgår av Fig. 71. En hypotes är att denna skillnad gentemot mätdata beror på att den longitudinella hyttfjädringskonstanten som använts i modellen felaktig. Därför gjordes en simulering där styvhetsen sattes till hälften, vilket borde ge en egenfrekvens om ca 10 Hz. Resultatet blir inte heller i detta fall helt likt mätdata.

Fig. 71 Nedväxling 2-1, Filtrera (t.v) och ofiltrerade (t.h) signaler för hyttmodell med sits (t.v.)

Sammanfattning för utvärdering av hyttmodeller för nedväxling 2-1:
- Fordonsmodellen med hytt och sits fångar inte de longitudinella svängningarna för hytten som uppträder nedväxling 2-1, vilken är den hårdaste växlingen. En möjlig hypotes är att den longitudinella styvheten och dämpningen i modellen är felaktig och att isolatormodellen är för enkel.
8.7 Utvärdering av däckens slirande egenskaper

För att utvärdera däckmodellerna avseende slirande egenskaper används körcykeln grushög. Endast den senare delen, efter 16 sekunder är här av intresse. Statisk friktionskoefficient, μ_p, till underlaget är satt till 0.3 och dynamisk, μ_k, till 0.27. Vid tiden 15 sekunder hålls full gas och full fart på 4ans växel. Gångmotståndet stebras kraftigt efter 16 sekunder varpå farten minskar och nedväxling sker, först till 3an och efter 18.5s kick-down till 1an. Fordonet står då i princip stilla. Fig. 72 och Fig. 73 visar hjulens rotationshastighet respektive slip för modell med hjul av fjäder/dämpartyp och resultatet för modell utan hjul (”kuggstångslera”) visas i Fig. 73.

Fig. 72 Utvärdering av hjulmodells slirande egenskaper. Hjulmodell av fjäder/dämpartyp möter kraftigt ökat gångmotstånd efter 16 sekunder. Se speciellt fordonshastighet (grön kurva) och hjulens rotationshastighet (mörkblå kurva)
Fig. 73 Kraftigt ökat gångmotstånd för modell utan hjul, d v s. ”kuggstängslera”

Med hjulmodellen blir dragkraften efter kick-down större än friktionskraften mot underlaget och hjulen börjar slira efter 19 sekunder. Utan hjul uppkommer stora spikar i accelerationssignalen.

Fig. 74 Slip för modell av fjäder/dämpartyp vid kraftigt ökat gångmotstånd

I Fig. 74 ses att slipet växer till 1. Slipet begränsas till intervallet [-1 1].
Fig. 75 Rotationshastighet för däck i slirande hjulmodell vid högt gångmotstånd och gasavdrag från 100% till 0% efter 20 sekunder

Däckmodellen av fjäder/dämpartyp kräver injustering och ytterligare utvärdering innan den fungerar i alla situationer. I Fig. 75, Fig. 76 och Fig. 77 används körcykeln grushög för att påvisa ett felaktigt uppträdande hos modellen. Gaspådraget är 100% fram till 20s, därefter släpps gasen helt till 0% gaspådrag varpå hjulen börjar rotera bakåt. Felet ligger i att slipet integreras fram till ett för stort värde (jämför typexempel slipkurva i Fig. 27) och därför ger hög dragkraft (turkos kurva i Fig. 76) länge. Ingående vridmoment till hjulen (röd kurva) är vid tiden mellan 20 och 22 sekunder lägre än från däcken utgående vridmoment.

Vidare kan ses att slipet sjunker fram till ca 21.2s och därefter är konstant. Orsaken till det är att den implementerade logiken från [14] sätter ”uppspänningsderivatan” $\frac{du}{dt}$ till noll då några villkor är uppfyllda.

I Fig. 77 har fjäderuppspännningen u begränsats till [-0.1 0.1] och problemen med hjulrotation åt fel håll elimineras. Detta visar att det typiska dragkrafts- och slipkurvan i Fig. 27 troligen inte är relevant för en däckmodell av fjäder/dämpartyp och den bör därför ersättas med en mer linjär kurva. Därmed hindras den dragkraftsgenererande fjädern från att bli orimligt mycket uppspänd. Om SAEslipvärdet är av intresse att studera kan detta visas utan att det används vid dragkraftsgenerering.
Fig. 76 Slip och dragkraft för fjäder/dämparmodell vid gasavdrag i körcyklen grushög. Fjäderuppspänningen är begränsad till [-1 1] och modellen ger felaktigt resultat på rotationshastigheten vid gasavdrag.

Fig. 77 Slip och dragkraft för fjäder/dämparmodell vid gasavdrag i körcyklen grushög. Fjäderuppspänningen är begränsad till [-0.1 0.1] och resultatet blir rimligt.
9 Bilaga 2 - Variabelförteckning

9.1.1 Variabler för text och simulinkmodell

\[\beta\] Underlagets lutning [rad]. \(\beta < 0\) i uppförsbacke

\[\varphi\] Pitchvinkel för hytt och stol

\[\theta\] Pitchvinkel för ram

\[\kappa, i\] Slip [\]

\[\kappa_{\text{lowspeed}}\] Alternativ slipdefinition [\] som gäller då \(v < \nu_{\text{low}}\)

\[\kappa_{\text{lowspeed,init}}\] Initialvärde [\] för \(\kappa_{\text{lowspeed}}\) då funktionen aktiveras.

\[\mu_p, \mu_k\] Maximal (statisk) friktionskoefficient [\]

\[\mu_k, \mu_k\] Kinetisk friktionskoefficient [\]

\[\sigma_k\] Relaxationslängd [m]

\[a, \omega, \text{omega}, \beta_{\text{dot}}\] Hjulets rotationshastighet [rad/s]

\[a_{\text{veh}}, x_{\text{dot dot}}\] Längd på kontakttyta mellan däck och underlag [m]

\[C_{F_k}, C_{\text{slip}}\] Longitudinell slipstyrhet per längdenhet [N]

\[C_F\] Longitudinell däckstyrhet [N/m]

\[\text{Dynamic_mass}\] Dynamisk massa [kg]. Ändras då skopan lastas.

\[F_a\] Kraft [N] som accelererar fordonet, parallell med marken

\[F_{d1}, F_{\text{veh drag}}, F_{wx}\] Dragkraft, parallell med marken [N]

\[F_{d2}\] Dragkraft [N] då \(\theta < |\kappa| < i_c\)

\[F_{d2}\] Dragkraft [N] då \(i_c < |\kappa| < i_{c2}\)

\[F_{d3}\] Dragkraft [N] då \(i_{c2} < |\kappa| < 1\)

\[F_z\] Normalkraft [N]

\[i_c, i_c\] Kritisk slipgräns [\]. Dragkraft linjär då \(|\kappa| < i_c\)

\[i_{c2}, i_{c2}\] Övre slipgräns [\]. Dragkraft minskar då \(|\kappa| > i_{c2}\)

\[\text{Mass}\] Motorvarvtal [rpm, varv/min]

\[\text{omega}_{\text{dot}}\] Hjulets rotationsacceleration [rad/s²]

\[r_e\] Effektiv rullradie [m]

\[r_{\text{omega}}\] Hastighet för hjulperiferin [m/s] = \(r_e\omega\)

\[\text{Roll_res_coeff}\] Rull-(gång-)motståndskoefficient [\]

\[T, \text{Torque_in}, \text{Torque_tire_in}\] Vridmoment [Nm] till hjulet

\[\text{Torque_tire_out}\] Vridmoment [Nm] från hjulet = \(r_eF_d\)

\[\text{TRM_actual_gear}\] Aktiv växel i SimPow. Värden 6-9 motsvarar fram, växel 1-4 och värden 10-13 back, växel 1-4

\[\text{Turbine_speed}_{\text{rpm}}\] Turbinvarvtal hos momentumvandlaren [varv/min]

\[u\] Deformation [m] av däcket

\[v\] Fordonshastighet [m/s]

\[v_{\text{low}}\] Hastighetsgräns [m/s] för slip vid låg hastighet. Växling mellan olika sliphastigheter sker vid \(v_{\text{low}}\)

\[v_s\] Sliphastighet [m/s]

\[v_{\text{veh}}, x_{\text{dot}}\] Fordonshastighet i longitudinell led [m/s]
\[x'_\text{dot} \quad \text{Fordonshastighet parallell med underlaget [m/s]} \]
\[x'_{s\text{dot}_\text{dot}} \quad \text{Sitsens longitudinella acceleration [m/s}\^2\text{]} \]
\[x'_{u\text{dot}_\text{dot}} \quad \text{Hyttens longitudinella acceleration [m/s}\^2\text{]} \]
\[z'\text{dot} \quad \text{Fordonshastighet i vertikalled [m/s]} \]

9.1.2 Parametervärden för modeller

Hjul
- \(\sigma_\mu \) 0.5 [m]
- \(a \) 0.6 [m]
- \(C_{\text{slip}} \) 8*10^5 [N]
- \(i_{c2} \) 0.20 []
- \(J_{\text{wheel}} \) 800 [kgm^2]
- \(m_{\text{wheel}} \) [kg]
- \(r_e \) 0.816 [m]
- \(v_{\text{low}} \) 0.05 [m/s]

Vertikal däckfjädring (värden per par)
- \(C_z \) 5000 [Ns/m]
- \(K_z \) 1.13*10^6 [N/m]

Ram
- \(a \) 0.5982 []
- \(\gamma \) 0.1737 []
- \(K \) 0.1037 []
- \(\lambda \) 0.4372 []
- \(\theta_{\text{init}} \) 0.0037 [rad]
- \(D \) 1.02 [m]
- \(I_{yy_{\text{body}}} \) 200927 [kgm^2]
- \(L \) 3.55[m]
- \(m_{\text{body}} \) 22301[kg]
- \(X_{\text{init}} \) -1.9*10^{-4} [m]
- \(Z_{\text{init}} \) -0.0511 [m]

Hytt
- \(\alpha_{\text{cab}} \) 1 []
- \(K_{\text{cab}} \) 0.798 []
- \(\gamma_{\text{cab}} \) -0.3485 []
- \(\lambda_{\text{cab}} \) 0.4412 []
- \(\phi_{\text{init}} \) 0.0037 [rad]
- \(D_{\text{cab}} \) 0.055 [m]
- \(I_{yy_{\text{cab}}} \) 7272 [kgm^2]
- \(L_{\text{cab}} \) 1.02 [m]
- \(m_{\text{cab}} \) 888 [kg]
- \(X_{\text{init}} \) 0.0051[m]
- \(Z_{\text{init}} \) -0.0521 [m]

Sits
- \(K_{\text{seat}} \) -84 []
- \(C_{z,\text{sits}} \) 1000 [Ns/m]
- \(D_{\text{seat}} \) 0 [m]
- \(I_{yy_{\text{seat}}} \) 748.89 [kgm^2]
- \(K_{z,\text{sits}} \) 5871.2 [N/m]
- \(L_{\text{seat}} \) -0.005 [m]
- \(m_{\text{seat}} \) 88 [kg]

Isolatorer (värden per par)
- \(C_x \) 3500 [Ns/m]
- \(C_z \) 4400 [Ns/m]
- \(K_x \) 3.2*10^5 [N/m]
- \(K_z \) 1.28*10^7 [N/m]
På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtidss ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra-ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämt som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional on the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/

© [Daniel Brengdahl]