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Abstract

Electrical drives are widely used in today’s society. They can be found in both
household products and in the industry. One application where electrical drives
are used is in robots for mowing lawns. In the studied robots the motors in the
electrical drives used for propulsion are Brush Less Direct Current motors, BLDC-
motors. The BLDC-motor has its maximum torque at high speeds and therefore
a gearbox is needed. The gearbox is space consuming, add costs and consists of
mechanical parts that wear during use. Of interest is therefore to investigate if
there are other electrical drives which can be used for propulsion.

A motor who has its maximum torque at low speeds is the Stepper motor, and
therefore it is of interest to investigate if a stepper motor could replace the BLDC-
motor. A drawback with the stepper motor is that it always consumes maximum
current and therefore a current controller is beneficial. Together with current
control, speed control is needed to make the robot run at desired speed. To be
able to perform an accurate current and speed control feedback from the motor is
needed. Information about the rotor angle and velocity can be used for the speed
control and the load angle can be used for the current control since the current is
proportional to the load torque.

To estimate the rotor angle and velocity a model has been developed. The
model is based on fundamental electrical and mechanical equations and neglects
the current and position dependence of the inductance and flux linkage. To com-
plete the model three motor parameters, the maximum detent torque Tdm, the
maximum flux linkage ψm and the friction constant Bwas determined. Parameter
determination was done by linear regression and by using an Extended Kalman
Filter, EKF. The result of the parameter determination were Tdm = 0.2152 Nm,
ψm = -0.002854 Vs/rad and B = 0.01186 Nms/rad.

The model is used in an EKF to estimate the rotor angle and angular velocity.
The result of the implemented EKF seems promising. When making the rotor
take a step in velocity from 3.927 rad/s to 7.85 rad/s the EKF estimates the states
with only a small bias: 0.02 rad for the angle, 0.3 rad/s for the velocity, 0.005 A
for phase a current and 0.0004 A for phase b current.

To estimate the load angle the Sliding Discrete Fourier Transform is used. The
expected relation between the load torque and load angle is sinusoidal. The load
angle is calculated from data where the external load is between 0-2.5 Nm. In
that area the load angle shows the expected sinusoidal appearance and the load
angle is in the area between 0.1 and 0.45 rad. At 3 Nm the rotor stalls and it is
shown that the load angle varies between 0 and 2π rad when the rotor is stalled.
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Notation

Acronyms

Acronym Meaning

ACF Autocorrelation Function
BLDC Brush Less Direct Current
DFT Discrete Fourier Transform
EKF Extended Kalman Filter
EMF Electromotive Force
HSM Hybrid Stepper Motor
ODE Ordinary Differential Equation
OLS Ordinary Least Squares
RSS Residual Sum of Squares

SDTF Sliding Discrete Fourier Transform

Symbols

Symbol Meaning

L inductance [H]
R resistance [Ω]
J inertia [kgm2]
B friction coefficient [Nms/rad]
ej back electromotive force for phase j [Vs]
ψ flux linkage [Vs/rad]

ψmax maximum flux linkage [Vs/rad]
θ rotor angle [rad]
ω rotor angular velocity [rad/s]
ij phase j current [A]
vj phase j voltage [V]
Tj torque produced by phase j [Nm]
TD detent torque [Nm]
TL load torque [Nm]
δ load angle [rad]
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1
Introduction

Everywhere in today’s society, it is possible to come across products whose func-
tionality is based on motion. In most households you probably can find products
such as household appliances, tools, watches, fans, hair dryers, printers and toys,
and in the industry you can find robots, vehicles, elevators, escalators, rolling
mills and pumps. What enables the movement in all these products are electrical
drives.

An electrical drive has five main functional blocks: power source, power mod-
ulator, motor, mechanical load and a control unit. Sometimes also a sensing unit
is added to provide feedback to the control unit, see Figure 1.1.

Figure 1.1: The main functional blocks of electrical drives.

This master thesis concerns modelling of a Hybrid Stepper Motor (HSM) and
developing of a sensorless estimator for the motor. This to develop a basis for a
future current and speed controller to an HSM. This first chapter will describe the
motivation for this master thesis and why it is an interesting area to investigate.
It will also contain the problem formulation and an outline of this thesis report.

1



2 1 Introduction

1.1 Motivation

Husqvarna AB has developed and sold autonomous robots for mowing lawns
for 20 years. Important factors are that the robots are energy efficient, not too
expensive to manufacture and long lasting without need to repair it.

Today, the motors used for robots propulsion are Brush Less Direct Current
motors (BLDC-motor). The BLDC-motor has its maximum torque at a speed
above the speed the robot will be run in. Therefore, a gearbox is needed to obtain
the desired torque at lower speeds. The disadvantage with this solution is that
the gearbox is space consuming, increases the cost of the robot and consists of
mechanical parts that wear during use. For that reason it is of interest to inves-
tigate if there are other motors that can be used for propulsion without use of a
gearbox.

A motor with its maximum torque at low speeds is the stepper motor. The ad-
vantage with this motor is thus that a gearbox is not necessary to obtain desired
torque at low speeds. A stepper motor is also cheaper than a BLDC-motor. There-
fore, introduction of a stepper motor instead of current technology can reduce
the cost of the robot, decrease the space of the motor solution and eliminate the
problem with worn out gearboxes.

To be able to replace the motor, a new control algorithm needs to be devel-
oped. If the load is fixed during drive, a stepper motor can be controlled by an
open loop method. However, open loop control often results in torque and speed
ripples, noise, vibrations, a poor energy efficiency and no control on step loss. To
avoid step loss, motor applications based on open loop control often are driven
with maximum current which is not preferable for battery applications.

For applications where the load will vary during drive, a closed loop control
is preferred. For closed loop control the most straightforward method is to use
a rotor position sensor. A mechanical sensor increase cost and size of the motor
and Husqvarna therefore wants a sensorless solution.

1.2 Problem formulation

The purpose is to investigate if it is possible to develop a sensorless estimator
for a hybrid stepper motor and discuss if the outcome from the estimator can
be used to perform a sensorless speed and torque control on a Hybrid Stepper
Motor (HSM). To be able to do an accurate speed and torque control of the motor
feedback such as rotor angle, rotor velocity and the load angle can be used. The
sensorless estimator will use the phase current and phase voltages of the motor
to estimate above mentioned states. Due to the lack of hardware, the model and
estimator will only be implemented and tested in a simulation environment.

If the result looks promising Husqvarna AB has a basis for further investiga-
tion of stepper motors and its potential to replace the BLDC-motors. Further
this can decrease the cost of the robot and also increase the lifespan of the motor
solution.
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1.3 Outline

The thesis is organized in several chapters. Chapter 2 shortly describes the re-
lated work to this thesis and which kind of solutions that have been used for
similar problems. Chapter 3 introduces the background theory of the thesis. In
Chapter 4 the equipment for data collection is described. Chapter 5 describes
the model of the HSM which will be used in further investigations of the HSM.
The model contains of unknown parameters, and how to determine these are
described in Chapter 6. In Chapter 7 an Extended Kalman filter is introduced
for estimation of the rotor angle and rotor position. In the end of the chapter a
method of estimating the load angle is presented. Chapter 8 presents the results
of the model and estimator in Matlab. Chapter 9 discusses the result and the
future work in this area. Finally, a conclusion is made in Chapter 10.





2
Related work

The modern stepping motor was first invented in 1957 by Thomas and Fleis-
chauer [10]. Stepping motors are often used in digital control systems where
the motor receives open loop commands, in shape of train pulses, to rotate to
a specific angle [16]. This makes stepping motors suitable in printers, plotters,
CD-players and for tool positioning [16]. But due to the rotor inertia, the rotor
oscillates around the goal position before stabilizing which creates an jerky mo-
tion of the rotor. Because of this the motor can loose steps if the variation of
the load torque is too fast [2]. Usage of programmable architectures like field-
programmable gate arrays circuits together with advanced control algorithms en-
ables microstepping of the motors. This makes the rotor motion smoother but
problem with step loss still remains [2], [7]. The control algorithms can also op-
timize the torque dynamics in the motor [7]. To work properly these algorithms
needs feedback, such as rotor position or rotor flux, from the motor. This means
that a closed loop control needs to be introduced. A closed loop control can be
performed either with a positioning sensor or with a rotor position estimator. A
position sensor adds costs and complexity, and increase the size of the system.
Therefore it is of interest to provide feedback from a positioning estimator in-
stead [7].

A commonly proposed estimator is the Extended Kalman Filter, EKF, which
is used to estimate the rotor position and velocity [2], [4], [14]. To be able to
implement an EKF a state space model of the motor is needed. Authors in [2],
[14] and [15] proposes a model based on fundamental electrical and mechanical
equations. The model represents the motor phases separately. According to au-
thors in [2] this is because the Hybrid Stepper Motor has its two phases, a and
b, in quadrature. The electrical equations neglects the position and current de-
pendence of the permanent magnet flux linkage and inductance. According to
authors in [4] this could lead to poor model fit since the significance of the posi-

5



6 2 Related work

tion and current dependence may not always be negligible. However, adding this
dependence increases the complexity of the model and how much the model fit
will increase depends on the available hardware. A decision must also be made
if a more complex model is worth an increase in computational costs [4].

The models proposed in [2], [4], [14] and [15] are mostly used for speed and
position control and in situations where the load torque is small or varies slowly.
In the suggested models the load torque is an unknown source of disturbance and
to increase the overall robustness of the system it is useful to also use the EKF to
estimate the load torque. To be able to estimate the load torque it is added as a
fifth state and an equation explaining the load torque variations is added in the
model [14].

To be able to get more information about the load another possibility is to
estimate the load angle [5], [6], [7]. The load angle describes the lag between the
instantaneous rotor position and the stator current excitation vector and is the
angle between the current vector and the vector of the magnetic flux. Since the
magnetic flux is perpendicular to the back Electromotive Force (back-EMF) the
load angle can be determined by first determine the back EMF [5], [6], [7]. To
determine the load angle the authors in [5] proposes a method where the back
EMF is determined by sample the voltage at the zero crossing of the current. The
authors in [6], [7] instead proposes a method where the back EMF is determined
by using the Sliding Discrete Fourier Transform, SDFT.

In this chapter previous work with modelling Hybrid Stepper Motors were
presented. Some of the techniques aforementioned will be considered in the the-
sis to be able to find out if they are applicable in the real world application.



3
Theoretical background

This chapter consist of basic knowledge about subjects covered in this thesis. The
chapter will first introduce the Hybrid Stepper Motor. It will continue introduc-
ing the load angle and the Sliding Discrete Fourier Transform. Next, multiple
linear regression, which is a method for estimating parameters to a model equa-
tion, is described. The chapter continues by describing residual analysis and how
to use it to determine whether a model can explain a data set or not. At last the
Extended Kalman Filter is explained.

3.1 Hybrid Stepper Motor

Stepping motors are designed to translate switched excitation changes into de-
fined increments of rotor position, so called steps [1]. Stepping motors often pro-
duces a large number of steps per revolution, for example 50, 100 or 200 steps
per revolution which corresponds to a mechanical rotation of 7.2◦, 3.6◦ or 1.8◦

per step [16]. Stepping motors has doubly salient structure, which means that
both the rotor and stator teeth consists of magnetically permeable material, see
Figure 3.1. As seen in the figure the magnetic flux crosses the air gap between the
teeth causing a normal force n, which tries to close the air gap, and a tangential
force t, which moves the teeth sideways. This forces will be zero as soon as the
magnetic flux is removed [1].

The Hybrid Stepper Motor, HSM, has a doubly salient structure [1]. The
magnetic circuit is exited by a combination of windings on the stator, and a per-
manent magnet on the rotor, see Figure 3.2. In the figure the stator poles are
wounded separately. It is also possible to wound them together two and two
which will improve the torque production [16]. The rotor in a HSM consists of
two identical rotor stacks which are displaced axially along the rotor and in angle
by one half of the rotor tooth pitch. The rotor tooth pith is the angle between two

7



8 3 Theoretical background

Figure 3.1: Rotor and stator teeth in a stepping motor. Vectors t and n are
the force components between two magnetically permeable teeth.

rotor teeth, see Figure 3.2, and can be calculated as

rotor tooth pitch =
(

360
p

)◦
(3.1)

where p is the number of rotor teeth [1]. The HSM has typically eight stator poles
which is winded by two phases, a and b, see Figure 3.2. Continuous rotation
of the motor is provided by exiting the phases a and b in desired order. The
phases are excited by making current ia and ib flow through the stator windings.
For the HSM illustrated in Figure 3.2 clockwise rotation would be obtained by
the excitation sequence a+, b+, a-, b-, a+, b+, and so on. Each excitation will
make the rotor take one step and a complete cycle of excitation will create four
steps. Since the excitation state is the same before and after these four steps the
alignment of the stator and rotor teeth will occur under the same stator poles [1].
This means that four steps corresponds to a rotor movement of one rotor tooth
pitch and the step length can therefore be related to the number of rotor teeth, p,
as

step length =
(

90
p

)◦
.

The excitation sequence a+, b+, a-, b-, a+, b+... makes the motor take so called
full steps. By excite the phases together, and not only one by one, it is possible to
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Figure 3.2: The left figure shows a cross section of the rotor togehter with
the stator phases a and b. The phases are excited by making current ia and
ib flowing through the stator windings. The right figure shows a side view of
an HSM.

make the motor take smaller steps, such as half steps. An illustration of how half
steps is created can be seen in Figure 3.3. By using the same principle, together
with different current levels it is possible to make the rotor take even smaller
steps, so called microsteps.

Figure 3.3: An illustration of how half step motion is created.

3.2 Load Angle

The load angle, δ, describes the lag between the instantaneous rotor position and
the stator current excitation vector and is the angle between the current vector
is and the vector of the permanent magnet rotor flux ψ, see Figure 3.4. To de-
termine the load angle information about the current vector is and vector of the
permanent magnet rotor flux ψ is needed. Since is is the resulting component
of the phase currents ia and ib, and ia and ib can be measured, it is possible to
determine is. To get information about the permanent magnet rotor flux is not
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Figure 3.4: Current vectors ia, ib, is, flux vector ψs, and back EMF vector es
and their relations to the load angle δ.

as straightforward. However, by using Lenz’s law the back-EMF voltage vector
induced by the permanent magnet rotor flux can be written as

es = C
dψ

dt
(3.2)

The result of this is a phase lead of π/2 rad between the back EMF and the per-
manent magnet rotor flux vector. From this follows that the angle between the
current vector and the back EMF-vector is equal to π/2 − δ. This means that
with knowledge of the current vector is and the back-EMF the load angle can be
determined [7].

Of interest is the relation between the load angle and the motor torque. The
electromagnetic motor torque vector can be determined with the interaction be-
tween the stator flux linkage space vector ψs and the stator current space vector
is as

Tmotor = ψs × is (3.3)

If the saturation is neglected the flux linkage space vector ψs can be written as the
sum of the permanent magnet rotor flux ψ and the stator flux linkages established
by the two stator currents. [7]. In the dq-reference frame, which is fixed in the
rotor, the motor torque can be written as

Tmotor = (ψ + idLd + iqLq) × is (3.4)
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The electromagnetic torque value can be written as a function of is and the load
angle δ as

Tmotor = ψissin(δ) +
Ld − Lq

2
i2s sin(2δ) (3.5)

In equation (3.5) the first term describes the torque generated by the interaction
between ψ and is. The second term represent the reluctance effect due to the
multi toothed rotor. As seen the two terms depend on the sine of the load angle
respectively sine of twice the load angle. This means that the relation between
the load angle and the generated torque should be sinusoidal. If the motor has
two phases the maximum load angle before step loss occurs is π/2.

3.3 Sliding Discrete Fourier Transform

To determine the fundamental component of a signal, Fourier analysis can be
used [6], [7]. At a discrete time instance k, the hth harmonic component Xh[k]
can be written as

Xh[k] =
N−1∑
l=0

x[k − [N − 1] + l]e−2πhjl/N (3.6)

To be able to calculate the fundamental component, h = 1, a signal of N samples
is needed. When a new sample is available equation (3.6) updates the fundamen-
tal component. To sum all measurement samples over one signal period N is
time consuming. However it is possible to only add the newest sample x[n] and
remove the oldest sample x[n-N]. This creates a sliding window over the signal
in which the fundamental harmonic component is calculated. This operation is
called a Sliding Discrete Fourier Transform, SDFT, [6]. The Fourier component
Xh[k] at a time instance k is written as

Xh[k] = x[k − [N − 1]] + x[k − [N − 1] + 1]e−2πhj/N + x[k]e−2πhj[N−1]/N (3.7)

The previous component Xh[k − 1] is written as

Xh[k − 1] = x[k − N ] + x[k − [N − 1]]e−2πhj/N + x[k − 1]e−2πhj[N−1]/N (3.8)

Equation (3.8) can also be subtracted from equation (3.7)

Xh[k] = [Xh[k − 1] − x[k − N ]]e2πhj/N + x[k]e−2πhj[N−1]/N (3.9)

Due to the relation
e2πhj/N = e−2πhj[N−1]/N (3.10)

equation (3.9) can be rewritten as

Xh[k] = [Xh[k − 1] + x[k] − x[k − N ]]e2πhj/N (3.11)
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3.4 Multiple linear regression

A task that often occurs when developing models is to estimate the model param-
eters. The model made for the HSM will ba a model based on physical fundamen-
tals and the parameters will therefore be physical [11]. One way of determining
the model parameters are by using multiple linear regression. The general multi-
ple regression model has the form

Y = β0 + β1X1 + · · · + βpXp (3.12)

where Y is the model response, X = [1, X1, · · · , Xp] are the regressors of the model
and β = [β0, · · · , βp] are unknown parameters [17]. If the values of X are specified,
equation (3.12) can be written as

y = β0 + β1x1 + · · · + βpxp (3.13)

Suppose data is observed for n cases. This means that Y , X and β can be defined
as

Y =


y1
y2
...
yn

 X =


1 x11 · · · x1p
1 x21 · · · x2p
...

...
...

...
1 xn1 · · · xnp

 β =


β0
β1
...
βp

 . (3.14)

In matrix terms (3.14) the mean function of the model response is

Y = Xβ. (3.15)

An estimation of the parameters β can be done by using ordinary least squares
(OLS) estimation. The least squares estimate β̂ of β is chosen to minimize the
Residual Sum of Squares (RSS) function [17]. If yi is the true output from the
system and xTi , i = 1 · · · n, is the ith row of X the RSS function is

RSS(β) =
∑

(yi − xTi β)2 = (Y − Xβ)T (Y − Xβ). (3.16)

The OLS estimates can be found from (3.16) by differentiation with respect to β
in a matrix [17]. Provided that the inverse (XTX)−1 exits, the OLS estimate is
given by equation (3.17).

β̂ = (XTX)−1XT Y (3.17)

3.5 Residual analysis

To determine if a model is able to explain a data set residual analysis can be used.
In this thesis the residuals will be defined as the prediction error, see equation
(3.18) [11].

ε(t, β) = y(t) − ŷ(t; β) (3.18)

A good model or estimation method should yield residuals with the properties
such as the residuals are uncorrelated and have zero mean. If the residuals are
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correlated, it means that there are information left in the residuals that can be
used in the model or in the estimation method. If the residuals does not have zero
mean, it means that the result is biased. If an estimation method gives residuals
that are correlated and have zero mean this means that the estimation method can
be improved. The autocorrelation (ACF) of the residuals can be used to determine
if the residuals are uncorrelated [8]. The autocorrelation of a signal for time-lags
τ is

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2 (3.19)

where µ is the mean and σ2 is the variance [12]. If the ACF is zero for all τ , 0
the signal is not correlated.

To determine if the residual has zero mean it is possible to look at the his-
tograms of the residual. A histogram is a graphical representation of the distribu-
tion of the data.

3.6 Extended Kalman Filter

The discrete-time Extended Kalman Filter (EKF) is a nonlinear filter that can be
used to estimate the states in a time discrete nonlinear system

xk+1 = f (xk , uk , vk) Cov(vk) = Qk

yk = h(xk , uk , ek) Cov(ek) = Rk

E(x0) = x̂1|0

Cov(x0) = P1|0.

where vk and ek are white noise [9]. The first order EKF is applied on the state
space model by using Algorithm 1. In Algorithm 1 the initial states x̂1|0 and P1|0
and the covariance matrixes Qk and Rk are seen as tuning parameters.

Algorithm 1 EKF algorithm

Sk = R + h′(x̂k|k−1)Pk|k−1(h′(x̂k|k−1))T

Kk = Pk|k−1(h′(x̂k|k−1))T S−1
k

εk = yk − h(x̂k|k−1)

x̂k|k = x̂k|k−1 + Kkεk

Pk|k = Pk|k−1 − Pk|k−1(h′(x̂k|k−1))T S−1
k h′(x̂k|k−1)Pk|k−1

x̂k+1|k = f (x̂k|k , uk|k)

Pk+1|k = fw(x̂k|k , uk|k)Q(fw(x̂k|k , uk|k))
T + f ′(x̂k|k , uk|k)Pk|k(f

′(x̂k|k , uk|k))
T
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The terms f ′(x̂k|k , uk|k) and fw(x̂k|k , uk|k)) are the Jacobians of the model with
respect to the states and noise respectively, and h′(x̂k|k−1) is the Jacobian of h(xk , uk , ek)
with respect to the states, see equation (3.22), (3.23) and (3.24).

f ′(x̂k|k , uk|k)) =
∂f

∂x

∣∣∣∣
x=x̂k|k

(3.22)

fw(x̂k|k , uk|k) =
∂f

∂v

∣∣∣∣
x=x̂k|k

(3.23)

h′(x̂k|k−1) =
∂h
∂x

∣∣∣∣
x=x̂k|k−1

(3.24)



4
Data collection

This chapter will first describe the equipment used to collect the data. I will
continue by describing the used motor and some of its characteristics. In the end
of the chapter the collected datasets and what they are used for are described.

4.1 Equipment setup

The hardware used for data collection is presented in Table 4.1, and the setup
for data collection is shown in Figure 4.1. The motor used is a Hybrid Stepper
Motor, HSM, see detailed description in Chapter 3. The given parameters for the
motor are listed in Table 4.2.

To run the motor a driver, together with a demo board from Allegro is used,
see Figure 4.2. The demo board has switches which makes it possible for the
user to easy change settings [13]. To make the motor drive as smooth as possible
mixed decay mode is used together with microstepping with 1/16 step. Mixed
decay mode is a technique to obtain greater control of the phase current when it
is decreasing [13]. On the driver it is also possible to set HOLD on and off. When
HOLD is on, the motor generates as much torque as possible with the given power.
The motor will take one step each time the step pin, see the pin-diagram in [13],
goes high. To be able to create a motion a pulse train will be applied to the step
pin. To perform this pulse train a waveform generator is used, with which it is
possible to set a desired frequency. For collecting data it is of interest to know
the motor load. With a test bench, which is used to break the motor, it is possible
to set the load torque between 0 and 6 Nm.

The motor has a step angle of 1.8 ◦. According to equation (3.1) this implies
that the number of rotor teeth, p, are 50. When driving in full step the motor
will perform 360

1.8 = 200 steps per revolution. Since the motor is microstepped
with 1/16 step the motor will perform 200 · 16 = 3200 steps per revolution. This

15
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Equipment Function
Hybrid Stepper motor from STEGIA The motor used for datacollection.
Agilent 33522A Waveform Generator Used to create step pulses in desired

frequency.
Agilent 0-30 V, 3A DC Power supply Used to power up the Demo board.
Keysight MSO-X 3034T oscilloscope Used to collect datasets.
Current probes Used to measure phase current.
Voltage probes Used to measure phase probes.
Allegro A3985/A3986/A4989 Demo
board rev2

Used to drive the motor.

A4989 Dual Full-Bridge MOSFET
Driver with Microstepping Translator

Used to drive the motor.

Hybrid Stepper Motor The HSM from which data is collected.
Test bench for breaking the motors Used to apply known load at the mo-

tor.
Table 4.1: Equipment used for data collection.

Parameter Value
Number of phases 2

Step Angle 1.8 ◦

Rated Voltage 3.5 V DC
Rated Current 2.8 Amp

Holding Torque 3.0 N.m Min (Two phase on/rated current)
Phase Resistance 1.25 ohm±10% (20◦C)
Phase Inductance 4.2 mH±20% (1kHz 1V rms)

Rotor Inertia 365g.cm2
Motor Weight 0.84 kg

Insulation Class B(130◦C)
Table 4.2: Motor parameters
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Figure 4.1: Setup for data collection. In the back row from left to right are
the waveform generator, the power supply and the oscilloscope. In the front
is the test bench for breaking together with the HSM and the Allegro Demo
board.

means that 3200 pulses on the step input on the Allegro driver is needed per
revolution.

The velocity of the motor is determined by the frequency on the pulse train set
to the step pin on the driver. If there is no step loss on the motor the velocity of the
motor will be proportional to the frequency of the pulse train. Theoretically if the
step frequency is f Hz the the motor will take n = f steps/s. If the motor needs
to take k steps per revolution the angular velocity can be calculated as ω = 2πn

k
rad/s. Table 4.3 lists different step frequencies and corresponding motor angular
velocities in rad/s.

To confirm the calculated relation between the step frequency and the angular
velocity of the motor a test is performed. The motor is driven with different
step frequencies and the time it takes for the motor to perform 10 revolutions is
measured with a stop watch. This is performed three times per step frequency
and based on the results the angular velocity is calculated as 30

time1+time2+time3 · 2π
rad/s. See the results in Table 4.4.

The squared error, (y − ŷ)2, of the angular velocities are listed in Table 4.5. As
seen in the tables the errors are small and therefore the theoretical values for the
velocity (Table 4.3) will be used in further calculations.

4.2 Collected Data

For modelling the motor, finding motor parameters, and test estimators, data
from the motor is needed. As mentioned in Chapter 4.1 the motor is microstepped
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Step frequency [kHz] Angular velocity [rad/s]
1 1.963

1.5 2.945
2 3.927

2.5 4.909
3 5.890

3.5 6.872
4 7.854

4.5 8.836
5 9.817

Table 4.3: Ratio between step frequency and motor angular velocity.

Step frequency
[kHz]

Average time for 10
revolutions [s]

Angular velocity
[rad/s]

1 32.13 1.956
1.5 21.38 2.939
2 15.94 3.942
2.5 12.94 4.854
3 10.69 5.878
3.5 9.13 6.879
4 8.01 7.841
4.5 7.10 8.854
5 6.37 9.869

Table 4.4: Test to confirm the calculated velocities.

Step frequency [kHz] (y − ŷ)2 [rad/s]
1 0.05993 × 10−3

1.5 0.004133 × 10−3
2 0.2185 × 10−3

2.5 2.955 × 10−3
3 0.1653 × 10−3

3.5 0.05135 × 10−3
4 0.1708 × 10−3

4.5 0.3234 × 10−3
5 2.642 × 10−3

Table 4.5: Squared errors between the theoretical angular velocities and the
measured angular velocities.
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Figure 4.2: Allegro demo board used to drive the motor with desired set-
tings.

with 1/16 step. To microstep the motor makes the current sinusoidal, and the
motor will obtain smooth motion. To make the current sinusoidal the voltage is
pulse-width modulated and the voltage level will change very fast, up to 30 kHz,
see Figure 4.3. When modelling and when determining model parameters it is ad-
vantageously to have as accurate data as possible and the rapidly changing phase
voltage make high demands on the sample time of the equipment. In Figure 4.3
it is also possible to see that the current is influenced by small variations. Some
of these variations are due to the pulse-width modulation and some of them are
due to measurement noise. This also make demands on the equipment since it is
important that the measurement noise does not hide system properties.

Different equipment for data collection, such as a BitScope model BS05, a
PicoScope2203 and a Keysight MSO-X 3034T oscilloscope, were tested. For the
BitScope and the PicoScope the data were covered in noise and it was hard to
distinguish the signal from the noise. However the Keysight MSO-X 3034T oscil-
loscope showed good results when collecting data for short periods. The datasets
collected are therefor only 1-2 seconds long. The datasets used in further experi-
ment are described in Table 4.6.
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Dataset Description
7 Used in Chapter 5 to determine which parameter sets that gives

highest model fit. Also used to estimate the parameters by us-
ing the EKF. The data is collected when the motor is driven at
constant speed, 3.927 rad/s. There is no applied load torque.

15 Data used in Chapter 8.2 to evaluate the performance of the EKF.
The data makes a step in velocity from 3.927 rad/s to 7.85 rad/s.

26 Used to evaluate the performance of the model and the EKF. The
data is collected when the motor is driven at constant speed,
3.927 rad/s. There is no applied load torque.

33 Data collected when the motor stalls. Used to investigate the
load angle in Chapter 7. The data is collected when the motor is
driven at constant speed, 5.89 rad/s. During the data is collected
to motor is stalled.

40 Data collected with the breaking bench. The applied load torque
is 0 Nm and the angular velocity is 3.927 rad/s. Used to investi-
gate the load angle in Chapter 7.

41 Data collected with the breaking bench. The applied load torque
is 0.5 Nm and the angular velocity is 3.927 rad/s. Used to inves-
tigate the load angle in Chapter 7.

42 Data collected with the breaking bench. The applied load torque
is 1 Nm and the angular velocity is 3.927 rad/s. Used to investi-
gate the load angle in Chapter 7.

43 Data collected with the breaking bench. The applied load torque
is 1.5 Nm and the angular velocity is 3.927 rad/s. Used to inves-
tigate the load angle in Chapter 7.

44 Data collected with the breaking bench. The applied load torque
is 2 Nm and the angular velocity is 3.927 rad/s. Used to investi-
gate the load angle in Chapter 7.

46 Data collected with the breaking bench. The applied load torque
is 2.5 Nm and the angular velocity is 3.927 rad/s. Used to inves-
tigate the load angle in Chapter 7.

81 Used in Chapter 5 to determine the maximum flux linkage. The
data is collected when the motor is driven at constant speed,
3.927 rad/s. There is no applied load torque.

91 Used in Chapter 5 to determine the friction constant, and used
in the same chapter in the multiple linear regression. The data is
collected when the motor is driven at constant speed, 3.927 rad/s
and then the power is cut and the motor decelerates. There is no
applied load torque.

Table 4.6: Data sets collected.
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Figure 4.3: The appearance of the phase voltage and phase current for one
phase when the motor is microstepped with 1/16 step.





5
Modeling

This chapter will present a model of an HSM based on fundamental electrical and
mechanical equations. The model will be implemented in Simulink and used in
further investigations.

5.1 Motor model

The motor model used in the thesis is divided in an electrical and a mechanical
part. An overview of the model and its parameters can be seen in figure 5.1. The
back EMF induced in coil a is given by

ea = ωpψm sin(pθ) (5.1)

where

ω - the rotor angular velocity, [rad/s]

p - the rotor teeth number

ψm - the maximum flux linkage, [Vs/rad]

θ - the angular position of the rotor, [rad]

Similarly, the back EMF induced in coil b is given by

eb = ωpψm sin(pθ − λ) (5.2)

where λ is the phase angle [15]. For a motor with two stator phases λ = π
2 and

equation (5.3) can therefore be rewritten as

eb = −ωpψm cos(pθ) (5.3)

23
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Figure 5.1: Illustration of the motor and motor parameters. To the left is
the electrical circuit which can be related to the electrical model equations.
Va is the phase a voltage, ia is the phase a current, R the phase resistance,
L the phase inductance and ea the back EMF for phase a. To the right is
an illustration of the stator and rotor. ψ is the flux linkage, B the friction
constant, J the rotor inertia, TL the load torque, theta is the rotor angle and
ω the rotor velocity.

The phase currents for the two phases are

L
dia(t)
dt

= Va(t) − Ria(t) + ω(t)pψm sin(pθ) (5.4)

L
dib(t)
dt

= Vb(t) − Rib(t) − ω(t)pψm cos(pθ) (5.5)

where

Va, Vb - the phase voltages, [V]

ia, ib - the phase currents, [A]

R - the resistance of the phase windings, [Ohm]

L - the phase inductance, [H]

Further the electromagnetic torque generated by the two phases are

Ta = iapψm sin(pθ) (5.6)

Tb = ibpψm cos(pθ) (5.7)

Since the stator and rotor have teeth the total torque is also complemented with
a component for the detent torque

Td = Tdm sin(2pθ) (5.8)
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where Tdm is the maximum detent torque [15]. The electromagnetic torque of the
motor is the sum of the phase torques and the detent torque

Te = −Ta − Tb − Td = −iapψm sin(pθ) − ibpψm cos(pθ) − Tdm sin(2pθ) (5.9)

The rotor motion can now be described as

J
dω(t)
dt

= Te(t) − TL − Bω(t) (5.10)

where

J - the rotor inertia [kg m2]

TL - the load torque [Nm]

B - Friction constant [Nms/rad]

By substituting the equation (5.9) into equation (5.10) the total equation describ-
ing the motion is obtained.

J
dω(t)
dt

= −iapψm sin(pθ) − ibpψm cos(pθ) − Tdm sin(2pθ) − TL − Bω(t) (5.11a)

dθ
dt

= ω (5.11b)





6
Determination of unknown motor

parameters

The unknown parameters needed for the model are the detent torque Tdm, the
friction constant B and the maximum flux linkage ψm. In this section three differ-
ent ways to determine the motor parameters will be presented.

6.1 Determination of parameters individually

This section will explain how the parameters can be determined one by one. The
detent torque Tdm is determined by using a torque wrench and the friction con-
stant B and the maximum flux linkage ψm is determined by using linear regres-
sion.

6.1.1 Detent torque

The detent torque, Tdm can be determined by help of a torque wrench when the
motor phases are unexcited. By using this method the detent torque was deter-
mined to Tdm = 0.1Nm.

6.1.2 Friction constant

To determine B the equation (5.11a) can be used. The motor is driven at a con-
stant speed with no load and after a while the power is cut and data are collected
during the time the motor decelerates. From the time the power is cut the phase
currents, ia and ib, are zero and the remaining parts of equation (5.11a) is there-
fore

J
dω(t)
dt

= −Tdm sin(2pθ) − Bω(t) (6.1)

27



28 6 Determination of unknown motor parameters

The velocity of the motor can not be measured, but because of the linear relation
between the step frequency and the angular velocity it is possible to know the
angular velocity of the motor before the power was cut. However it is not known
how the velocity will decrease to zero and therefore an assumption is made that
the velocity will decrease linearly. The dataset used to determine the parameter
is dataset 91 see Chapter 4.2. Dataset 91 can also be seen in Figure 6.1 the data
collected for the parameter determination is plotted. In the figure it can be seen
that the power is cut at time t = 0.1043. The voltage produced after the power
is cut is assumed to be the induced voltage from the motor. When the induced
voltage is zero the motor has stopped.

Figure 6.1: A picture of the data collected for determining B. The upper plot
shows the phase current and the lower the phase voltage. In the lower plot a
data point is added to show where the motor velocity starts to decrease. The
spikes in the voltage plot at times around 0.15 is assumed to be the induced
voltage in the coils. When the induced voltage is zero the motor has stopped.

With the assumption that the velocity decreases linearly, and knowledge about
the time it takes for the motor to stop, it is possible to calculate ω(t). With knowl-
edge of ω(t) it is also possible to calculate the rotor acceleration and the rotor
angle, see the results in Figure 6.2. In the figure, the angle θ is plotted to start
from zero radians. This means that the plotted angle is the angle the rotor rotates
from the measurements begins. It is not certain that the actual rotor angle θ
starts at zero radians. Since the motor is microstepped with 1/16 step the motor
will perform 0.1125◦ = 0.000625πrad each step. This means that the rotor angle,
when the measurement starts, can be n × 0.000625π rad, where n = 0, 1, ..., 3200.

When determining the friction constant, knowledge of the angle angle 2pθ =
100θ in equation (6.1) is of interest. The start angle can be 100θ = n × 0.0625π.
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To cover all possible angles it is only necessary to test angles between 0 and 2π
which means that n can be reduced to n = 0, 1, ...32.

Figure 6.2: Assumed appearance of angular velocity and corresponding an-
gle and acceleration.

With knowledge of the signals presented in Figure 6.2 and information about
the angular offset, B can be determined with linear regression.

− B = inv(XTX)XT Y (6.2)

where

Y = J
dw(t)
dt

+ Tdm sin(2pθ)

X = w(t)

In Figure 6.3 values for B are plotted for all offsets. According to the calcula-
tions B is between -0.003764 Nms/rad and 0.005078 Nms/rad.

The assumption that the velocity decreases linearly to zero may not be correct.
A more accurate assumption may be given by examine equation (6.1). The equa-
tion is an Ordinary Differential Equation (ODE) and the solution of an ODE is
an exponential function. Therefore a more correct assumption may be that the
velocity decreases exponential to zero. If assuming that the detent torque is small
equation (6.1) can be rewritten as

J
dω
dt

= −Bω⇔

J
1
Bω

dω = −dt.
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Figure 6.3: Calculated values for B when 2pθ has an offset between 0 and
2π rad.

To solve the differential equation, integrate both sides∫
J

1
Bω

dω =
∫
−dt ⇒

J
B

log |ω| = −t + C1 ⇒

ω = ± exp
(B
J

(−t + C1)
)

= ±C exp
(
−B
J
t
)

Before the power is cut the velocity ω is known. This means that the parameter
C can be determined as C = ω(0). The solution to the ode will therefore be

ω = ω(0) exp
(
−B
J
t
)

(6.3)

The drawback is that both the angular velocity ω and B is unknown and therefore
it is not possible to use linear regression to determine B.

6.1.3 Maximum flux linkage

To determine the maximum flux linkage, ψm, equation (5.4) or (5.5) can be used.
The equation (5.4) can be rewritten as

L
dia(t)
dt

− Va(t) + Ria(t) = w(t)pψm sin(pθ)



6.1 Determination of parameters individually 31

The data needed can be obtained by letting the motor drive with constant velocity
ω and measure the phase voltage and phase current of one phase, see dataset
81 in Chapter 4.2. Since all parameters in equation (5.4) except the maximum
flux linkage is known, or can be measured, the maximum flux linkage can be
determined by linear regression where

Y = L
dia(t)
dt

− Va(t) + Ria(t)

X = w(t)p sin(pθ).

As previous the offset of theta is unknown and it is of interest to know the
start value of the angle pθ in equation (5.4). The offset is n × 0.000625πrad, n =
0, 1, ..., 3200. The angle from equation (5.4) can take the start value pθ = 50θ =
n × 0.0313. It is only necessary to test values between 0 and 2π and therefore
n can be reduced to n = 0, 1, ..., 64. The maximum flux linkage, ψm, is therefore
calculated for angles of n×0.0313 where n = 0, 1, ..., 64. As seen in Figure 6.4, ψm
is between 0.02394 Vs/rad and -0.02394 Vs/rad.

Figure 6.4: Calculated values for ψm when pθ has an offset between 0 and
2π rad.

To find the best value of the parameters B and ψm, different combinations
are tested in the model, and the model is run with dataset 7, see Chapter 4.2,
where the motor is driven at constant speed, 3.927 rad/s. The error y − ŷ is then
calculated for the angle θ and angular velocity ω. The parameters that gave the
smallest prediction error were B = 0.0042Nms/rad and ψm = 0.0036V s/rad and
the corresponding prediction error can be seen in Figure 6.5. A model simulation
with the corresponding parameters and when dataset 7, see Chapter 4.2, is used
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Figure 6.5: Prediction error when the parameters Tdm = 0.1Nm, B = 0.0042
Nms/rad and ψm = 0.0036 Vs/rad are used.

as input can be seen in Figure 6.6. As seen in Figure 6.6 the angular velocity
ω varies much. The reason can be that the motor takes steps and therefore the
angle will oscillate a bit for each step, which in turn affects the angular velocity.

To investigate if the model describes the data in a good way the residuals
ε(t, β) = y(t) − ŷ(t; β) are calculated and studied. As mentioned in Chapter 3 the
model describes the data well if the residuals are uncorrelated and has mean zero.
The ACF of the residuals can be seen in Figure 6.7 and the histograms can be seen
in Figure 6.8. In the plot for the ACF it can be seen that correlation is not zero for
all lags τ , 0. This indicates that the residuals contain information that can be
included in the model. In the histograms is possible to see that the residual for
the angle θ has a small bias, < 0.04.

6.2 Determination with multiple linear regression

Another way to estimate the parameters is to again use equation (5.11a) together
with multiple linear regression as

Y = AX

where

Y = J
dw(t)
dt

A =
[
a1 a2 a3

]
=

[
ψm Tdm B

]
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.

Figure 6.6: The states from the simulink model when Tdm = 0.1Nm B =
0.0042 Nms/rad and ψm = 0.0036. Vs/rad The red curve in the upper left
plot and lower left plot are the theoretical values of θ and ω, the blue comes
from the model with the above mentioned parameters.

X =

x1
x2
x3

 =

−iap sin(pθ) − ibp cos(pθ)
− sin(2pθ)
−w


And the parameters will be determined by

A = inv(XTX)XT Y (6.4)

The data used is dataset 91 which is the data used to calculate B earlier, but here
also the measured signals ia and ib are used in the estimation. As previous the
offset of θ is unknown and parameters are calculated for different offsets. The
result is shown in Figure 6.9.

Combinations of the parameters are tested in the simulink model and the
prediction error y − ŷ is calculated for all parmeter sets. The parameters that
gave the smallest prediction error were

ψm = -8.796×10−6 [Vs/rad]

Tdm = 4.692 × 10−5 [Nm]

B = 2.535 × 10−5 [Nms/rad]

see the corresponding prediction error in Figure 6.10. A model simulation with
the parameters and when dataset 7, see Chapter 4.2, is used as input can be seen
in Figure 6.11. As seen in figure 6.11 the parameters are not able to describe the
real system and the parameter set is therefore rejected.
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Figure 6.7: Autocorrelation of the residuals for the parameter set Tdm =
0.1Nm, B = 0.0042 Nms/rad and ψm = 0.0036 Vs/rad.

6.3 Determination with the Extended Kalman Filter

Another method to determine the unknown parameters is to use the Extended
Kalman Filter, EKF. As described in Chapter 3.6 the EKF is used to determine the
states in a discrete nonlinear state space model. With the motor model equations
from Chapter 5 the following state space model can be obtained.

ẋ = a(x, u, d)

y = Cx
(6.5)

where

x =


ia
ib
ω
θ

 u =
[
Va
Vb

]
d = TL C =

[
1 0 0 0
0 1 0 0

]

a(x, u, d) =


1
L (u1 − Rx1 + x3ψmp sin(px4))
1
L (u2 − Rx2 − x3ψmp cos(px4))
1
J (−x1ψmp sin(px4) − x2ψmp cos(px4) − Tdm sin(2px4) − d − Bx3)
x3
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Figure 6.8: Histogram of the residuals for the parameter set Tdm = 0.1Nm,
B = 0.0042 Nms/rad and ψm = 0.0036 Vs/rad.

By adding the unknown parameters as states and assuming that the parameters
are constant the following can be added to the state space model (6.5)

Tdm = x5,

ψm = x5,

B = x7,

ẋ5 = 0

ẋ6 = 0

ẋ7 = 0

(6.6)

The linear state space model (6.5) is extended as

ẋ = a(x, u, d)

y = Cx
(6.7)

where

x =



ia
ib
ω
θ
Tdm
ψm
B


u =

[
Va
Vb

]
d = TL C =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
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Figure 6.9: Estimated values for the unknown parameters.

a(x, u, d) =



1
L (u1 − Rx1 + x3ψmp sin(px4))
1
L (u2 − Rx2 − x3ψmp cos(px4))
1
J (−x1ψmp sin(px4) − x2ψmp cos(px4) − Tdm sin(2px4) − d − Bx3)
x3

0
0
0

The state space model above is nonlinear and time continuous. To discretize
the linear model Euler forward is used according to

xk+1 = xk + T ẋ (6.8)

where T is the sampling time. The discretized state space model of the motor can
then be written as

xk+1 = xk + T (a(xk , uk , dk , vk)) = f (xk , uk , dk , vk) (6.9a)

yk = Hxk = h(xk , ek) (6.9b)

where H = C and vk and ek are white noise. Further on the load torque TL is seen
as an unknown disturbance and will in further calculations be merged with the
noise vk . The EKF can now be applied on the discrete state space model (6.9) by
using Algorithm 1.
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Figure 6.10: Prediction error for the parameter set Tdm = 4.692 × 10−5 Nm,
B = 2.535 × 10−5 Nms/rad, ψm = -8.796×10−6 Vs/rad.

6.3.1 Choose filter parameters

Design parameters for the EKF are the initial state x0|0 and the covariance of the
initial state P0|0. Also the covariance matrixes Q and R, and the noise matrix
fw needs to be chosen. There is no exact method for selecting the parameters
but, there are some guidelines discussed in [3]. The initial state will be chosen
as close to the known initial value as possible, and the covariance matrix P0|0
represents the confidence about the initial state. The Q matrix is connected to
the model noise. Increasing Q could either be seen as an indication of system
noise or it can be seen as an increase of model uncertainty [3]. The R matrix
is instead connected to the measurement noise. Increasing R indicates that the
measurements are affected by noise and cannot be trusted as much. It is common
to choose the P0|0, Q and R as diagonal matrices. According to [3] this is due to
the lack of information about the off-diagonal terms and also because the fact
that the off-diagonal terms often is significantly smaller than the diagonal terms.
The last matrix is the noise matrix fw. Since all noise affecting the estimates is not
modeled this matrix can be seen as a tuning parameter explaining the magnitude
of the noise rather than the Jacobian of the model with respect to the noise.
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Figure 6.11: The estimated signals from the simulink model for the parame-
ter set Tdm = 4.692 × 10−5 Nm, B = 2.535 × 10−5 Nms/rad, ψm = -8.796×10−6

Vs/rad. The red curve in the upper left plot and lower left plot are the theo-
retical values of θ and ω. The blue comes from the model with the calculated
parameters.

With the above thoughts in mind the matrices are chosen as:

x0|0 =



0
0

ωref
0
0
0
0


P0|0 =



10 0 0 0 0 0 0
0 10 0 0 0 0 0
0 0 1 · 10−2 0 0 0 0
0 0 0 1 · 10−2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



fw =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 10 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 · 10−3 0 0
0 0 0 0 0 1 · 10−3 0
0 0 0 0 0 0 1 · 10−3
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Q =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 · 10−1 0 0 0 0
0 0 0 1 · 10−3 0 0 0
0 0 0 0 1 · 10−3 0 0
0 0 0 0 0 1 · 10−3 0
0 0 0 0 0 0 1 · 10−3


R =

[
1 · 10−1 0

0 1 · 10−1

]

The result of the parameter estimation when using dataset 7, see Chapter 4.2,
can be seen in Figure 6.12. Of interest is to look at the covariance matrix for

Figure 6.12: Result of the parameter estimation using the EKF.

the estimated states to examine if the standard deviation is in the same order as
the estimated parameters. If the standard deviation is significantly larger than
the parameters the estimation is uncertain. The estimated parameters and cor-
responding variances and standard deviations are shown in Table 6.1. As seen
in Table 6.1 the estimated parameters have the same size as the corresponding
standard deviation and the parameter estimation is therefore valid.

6.4 Residual analysis

From the parameter determination above two different parametersets were pro-
posed. From Chapter 6.1 a parameter set was given for the unknown parameters
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Parameter Estimated value Variance Standard deviation
Tdm 0.2152 0.023526 0.153382
ψm -0.002854 0.000007 0.002646
B 0.01186 0.000210 0.014491

Table 6.1: The variances and standard deviation for the estimated parame-
ters.

according to: Tdm = 0.1 Nm, B = 0.0042 Nms/rad and ψm = 0.0036 V s/rad.
Parameter estimation with the EKF in Chapter 6.3 resulted in the parameter set:
Tdm = 0.2152 Nm, B = 0.01186 Nms/rad and ψm = −0.002854 V s/rad. To val-
idate the parameters, residual analysis is applied. The model is tested on with
a new dataset, in other words, not the dataset that were used to determine the
parameters. Data 26, see Chapter 4.2, is used as input to the model and the sim-
ulation result for the angle θ and angular velocity ω can be seen in Figure 6.13.
The histograms of the residuals y− ŷ can be seen in Figure 6.14. In the histograms
it is possible to see if the residuals are biased or not. In Figure 6.14 it can be seen
that both parameter sets causes small bias. For the θ-, ω- and ib-residual the
parameter set determined by the EKF gives a slightly smaller bias. For the ia-
residual the parameterset determined in Chapter 6.1 give a slightly smaller bias.
The ACF of the residuals are shown in Figure 6.15. From the ACF it is possible to
see if the residuals are correlated in time. If the residuals were not autocorrelated
the ACF would have been equal to zero for all lags except lag zero. In Figure 6.15
it can be seen that the residuals are more or less correlated. This means that there
are more information in the residuals that can be added in the model.

The model and the model parameters shall be chosen in a way that it is pos-
sible for the model to serve it’s purpose. The purpose of the model is to be
used in the EKF for estimating the rotor angle, and angular velocity. Since the
residual from the parameterset Tdm = 0.2152Nm, B = 0.01186Nms/rad and
ψm = −0.002854V s/rad gives a smaller bias and were less correlated for the θ and
ω residual the result of this analysis is that the parameterset Tdm = 0.2152 Nm,
B = 0.01186 Nms/rad and ψm = −0.002854 V s/rad is able to describe the real
system slightly better that the parameterset Tdm = 0.1 Nm, B = 0.0042 Nms/rad
and ψm = 0.0036 V s/rad.
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Figure 6.13: The figures in the left column are the result from a simula-
tion when the parameters Tdm = 0.1Nm, B = 0.0042Nms/rad and ψm =
0.0036V s/rad are used. The figures in the right column are the result from
a simulation when the parameters Tdm = 0.2152Nm, B = 0.01186Nms/rad
and ψm = −0.002854V s/rad are used. The red curve represent the precalcu-
lated θ and ω and the blue is the results from the simulations.
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Figure 6.14: The figures in the left column are the histograms of the resid-
uals for θ and ω for the parameters Tdm = 0.1Nm, B = 0.0042Nms/rad and
ψm = 0.0036V s/rad . The figures in the right column are the histograms for
the residuals when the parameters Tdm = 0.2152Nm, B = 0.01186Nms/rad
and ψm = −0.002854V s/rad are used.
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Figure 6.15: The figures in the left column are the ACF of the residuals for
θ and ω for the parameters Tdm = 0.1Nm, B = 0.0042Nms/rad and ψm =
0.0036V s/rad . The figures in the right column are the ACF for the residuals
when the parameters Tdm = 0.2152Nm, B = 0.01186Nms/rad and ψm =
−0.002854V s/rad are used.





7
Estimations

This chapter will describe the estimation methods used in this thesis. In the first
section the Extended Kalman Filter is implemented to estimate the rotor angle
and rotor position. In the next section the load angle estimation is described and
implemented.

7.1 Extended Kalman Filter

An Extended Kalman Filter (EKF) can be used to estimate the rotor angular veloc-
ity and the angle the rotor has rotated from the estimation started. As described
in Chapter 3.6 the EKF is used to determine the states in a discrete nonlinear state
space model. With the motor model equations from Chapter 5 the following state
space model can be obtained.

ẋ = a(x, u, d)

y = Cx
(7.1)

where

x =


ia
ib
ω
θ

 u =
[
Va
Vb

]
d = TL C =

[
1 0 0 0
0 1 0 0

]

a(x, u, d) =


1
L (u1 − Rx1 + x3ψmp sin(px4))
1
L (u2 − Rx2 − x3ψmp cos(px4))
1
J (−x1ψmp sin(px4) − x2ψmp cos(px4) − Tdm sin(2px4) − d − Bx3)
x3
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The state space model above is nonlinear and time continuous. To discretize the
linear model Euler forward is used according to

xk+1 = xk + T ẋ (7.2)

where T is the sampling time. The discretized state space model of the motor can
then be written as

xk+1 = xk + T (a(xk , uk , dk , vk)) = f (xk , uk , dk , vk) (7.3a)

yk = Hxk = h(xk , ek) (7.3b)

where H = C and vk and ek are white noise. Further on the load torque TL is seen
as an unknown disturbance and will in further calculations be merged with the
noise vk . The EKF can now be applied on the discrete state space model (7.3).
The first order EKF is applied on the state space model by using Algorithm 1.

As described in Chapter 6.3.1, design parameters for the EKF are the initial
state x0|0, the covariance of the initial state P0|0 and the covariance matrixes Q
and R, and the noise matrix fw. By using the guidelines described in Chapter
6.3.1, the matrices are chosen as:

x0|0 =


0
0

ωref
0

 P0|0 =


5 0 0 0
0 5 0 0
0 0 1 · 10−2 0
0 0 0 6

 fw =


1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 0


Q =


1 0 0 0
0 1 0 0
0 0 1 · 10−1 0
0 0 0 1 · 10−3

 R =
[
1 0
0 1

]

7.2 Load angle estimation

To get knowledge about the load torque [7] proposes to determine the load angle,
see description in Chapter 3.2. As mentioned in Chapter 3.2 the load angle can
be determined by knowledge of the phase current and the back EMF. The current
vector is can be measured leaving only determining of the back EMF.

To estimate the back EMF equation (5.4), describing the electrical relations in
the stator phase, can be used. The equation can be rewritten as:

es = us − Ls
dis
dt
− Rsis (7.4)

One possibility to estimate the back EMF is by solving equation (7.4), but since
the current is a noisy signal it is not recommended. Instead the authors in [7]
suggests to write equation (7.4) in the frequency domain.

Es(jω1) = Us(jω1) − jω1LsIs(jω1) − RsIs(jω1) (7.5)
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where ω1 is the fundamental frequency [7]. To determine ω1, the fundamental
voltage Us1 and fundamental current Is1 authors in [7] suggests to use the SDFT,
see Chapter 3.3. With knowledge of the back EMF the load angle can be deter-
mined according to

δ̂ =
π
2
− (∠(Es1 ) − ∠(Is1 )) (7.6)

The data used for calculating the load angle are dataset 33, 40, 41, 42, 43, 44
and 46, which is data collected with the breaking bench for load torques between
0-2.5 Nm, see Chapter 4.2. The datasets contains of collected phase voltages and
phase currents for the two phases respectively.

To obtain the current vector is and the voltage vector us the phase currents ia
and ib respective the phase voltages ua and ub are added together according to

is = ia + jib (7.7)

us = ua + jub (7.8)

This addition will preserve the information about the direction of the vectors.
The SDFT is then used to calculate Is and Us, and then the load angle δ̂. The
relation between the load torque and the load angle, when angular velocity is
3.927 rad/s and at maximum rated current 1.8 ampere, can be seen in Figure
7.1. When the rotor is stalled the load angle will increase π/2. In Figure 7.2 it is
shown how the load angle can vary when the rotor is completely stalled.

Figure 7.1: The relation between the load torque and load angle for ω =
3.927 rad/s.
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Figure 7.2: The appearance of the load angle when the motor is completely
stalled.



8
Results

In this chapter the results from this thesis work will be presented. In Section
8.1 the model together with the determined parameters will be evaluated for
different datasets. The model is used in the EKF to estimate the rotor angle and
angular velocity. The results from this estimations is presented in section 8.2.
Finally an evaluation of the load angle estimations is presented in section 8.3.

8.1 Evaluation of model and model parameters

From Chapter 6 it was determined that the parameterset Tdm = 0.2152Nm, B =
0.01186Nms/rad and ψm = −0.002854V s/rad, which was determined by the EKF,
were the best parameterset for the model. To evaluate the model it is tested on
with a new dataset, in other words, not the dataset that were used to determine
the parameters. The dataset used will be dataset 15, see Chapter 4.2. Dataset
15 is a dataset where the motor will take a step in velocity from 3.927 rad/s to
7.854 rad/s and is used to see how the model will perform in a more difficult
environment. In Figure 8.1 it is possible to see that the model is able to follow
the theoretical angle well when dataset 15 is used. The estimations of the velocity
is oscillating around the theoretical value, but the mean is close to the theoretical
value. In Figure 8.2 the current from the model can be seen. The frequency of
the current is able to follow the measured but the amplitude is to high. Also the
residuals y − ŷ are studied. The histograms of the residuals can be seen in Figure
8.3 and the ACF can be seen in Figure 8.4. It is possible to se that the residuals
only suffers from small biases, and are more or less correlated. This means that
there are more information in the residuals that can be added in the model.
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Figure 8.1: Simulation result when the parameters Tdm = 0.2152Nm, B =
0.01186Nms/rad and ψm = −0.002854V s/rad are used. The red curve rep-
resent the precalculated θ and ω and the blue is the results from the simu-
lations.

8.2 Evaluation of the EKF

In this master thesis the EKF is used to estimate the states, θ, ω, ia and ib. Of
most interest is θ, ω because this parameters can be used in a future control
algorithm to determine if the rotor follows the speed reference. They can also be
used to obtain knowledge of the length the robot has traveled. Due to the result of
the model and parameter determination described in Section 8.1 the parameters
used in the EKF estimate are Tdm = 0.2152Nm, B = 0.01186Nms/rad and ψm =
−0.002854V s/rad. As mentioned in Section 8.1 the model is developed to be
used in the EKF and therefore the results presented in this section is essential to
determine if the model is good enough or if the model needs to be modified.

To be able to test the performance of the EKF different datasets are tested and
the histograms and ACF of the corresponding residuals are analysed. Two of the
datasets used to evaluate the EKF are dataset 26 and 15 see Chapter 4.2. Dataset
26 is a dataset where the motor is run at a constant velocity, 3.927 rad/s and is
chosen to show the properties of the EKF in a situation where the robot is run at
constant velocity on a flat surface. Dataset 15 is a dataset which makes the motor
take a step in velocity from 3.975 to 7.85 rad/s and is chosen to show how the
EKF will perform in a more complex situation. Other datasets were tested but
showed similar results and are therefore not presented in this report.

The result of the estimations from data 26 can be seen in Figure 8.5. It can
be seen that the estimated states follows the precalculated values well. In Figure
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Figure 8.2: Simulation result when the parameters Tdm = 0.2152Nm, B =
0.01186Nms/rad and ψm = −0.002854V s/rad are used. The red curve is the
measured current and the blue is the results from the simulations.

8.5 the histograms of the corresponding residuals are plotted. Here it can be seen
that the result has a very small or none bias. The distribution of the current is
close to normal distribution. The ACF of the residual is shown in Figure 8.7. The
residuals for the angle θ and angular velocity ω are somewhat correlated. The
ACF of the residuals for the phase current shows no correlation. The current
estimates are better than the estimates of the angle and angular velocity because
the current is the measured signal.

The result of the estimations from dataset 15 can be seen in Figure 8.8. The
histogram and ACF for the corresponding residuals are shown in Figure 8.9 and
8.10. From the result it can be seen that the estimations of the rotor angle follows
the precalculated value well. The estimates of the angular velocity is good until
the angular velocity changes. After the change the variance of the angular veloc-
ity increases, however the mean of the angular velocity follows the theoretical
value.

8.3 Evaluation of load angle estimations

The results from the EKF can first and foremost be used for speed control. Of
interest is also to implement a torque control. This is of high interest since the
produced torque depends on the applied current; an increase of current means
an increase of the produced torque. Since the HSM is thought to be implemented
in an application operated on batteries it is preferable for the motors to run with
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Figure 8.3: Histograms of the residuals when the parameters Tdm =
0.2152Nm, B = 0.01186Nms/rad and ψm = −0.002854V s/rad are used.

as low power as possible. However if the current is too low it is possible that
the motor will loose steps. If step loss occurs it is possible that the estimates of
the rotor angle will be incorrect. The step loss also causes unwanted noise and
vibrations. To be able to gain information about the load and also to prevent
step loss the load angle estimate is a good complement. In Chapter 3.2 it was
mentioned that the relation between the load angle and the load torque should
be sinusoidal. In Figure 8.11 it is possible to see the relations between the load
angle and load torque for rotor angular velocity 3.927 rad/s and at maximum
rated current, 1.8 Amp. It can be seen in the figure that the appearance of the
curve is sinusoidal. At 3 Nm the motor will be stalled. In Figure 8.12 it can be
seen how the load angle can vary when the rotor is completely stalled for one
second. The fact that the rotor is stalled at 3 Nm is due to the holding torque,
which is 3 Nm, see Table 4.2.



8.3 Evaluation of load angle estimations 53

Figure 8.4: ACF of the residuals when the parameters Tdm = 0.2152Nm,
B = 0.01186Nms/rad and ψm = −0.002854V s/rad are used.

Figure 8.5: States estimated by the EKF for data 26 when the parameters
Tdm = 0.2152Nm, B = 0.01186Nms/rad and ψm = −0.002854V s/rad were
used. The red lines represents the expecting movement and the blue lines
represent the estimated movement.
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Figure 8.6: Histograms of the residuals calculated form the states esti-
mated by the EKF for data 26 when the parameters Tdm = 0.2152Nm,
B = 0.01186Nms/rad and ψm = −0.002854V s/rad were used.

Figure 8.7: ACF of the residuals calculated form the states estimated
by the EKF for data 26 when the parameters Tdm = 0.2152Nm, B =
0.01186Nms/rad and ψm = −0.002854V s/rad were used.
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Figure 8.8: States estimated by the EKF for data 15 when the parameters
Tdm = 0.2152Nm, B = 0.01186Nms/rad and ψm = −0.002854V s/rad were
used. The red lines represents the expecting movement and the blue lines
represent the estimated movement.

Figure 8.9: Histograms of the residuals calculated form the states esti-
mated by the EKF for data 15 when the parameters Tdm = 0.2152Nm,
B = 0.01186Nms/rad and ψm = −0.002854V s/rad were used.
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Figure 8.10: ACF of the residuals calculated form the states estimated
by the EKF for data 15 when the parameters Tdm = 0.2152Nm, B =
0.01186Nms/rad and ψm = −0.002854V s/rad were used.

Figure 8.11: The relation between the load torque and load angle for ω =
3.927 rad/s
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Figure 8.12: The appearance of the load angle when the motor is completely
stalled.





9
Discussion

In this chapter the results presented in Chapter 8 will be discussed. First a dis-
cussion of the parameter determination will be done and it will be follow with a
discussion about the model. After that, the EKF and load angle estimate will be
discussed. Finally the chapter will present how the results from this thesis can
be used in the future.

9.1 Results

In this section the results presented in Chapter 8 will be discussed. First the
modeling and parameter estimation will be discussed and after that follows a
discussion about the EKF and load angle estimation.

9.1.1 Motor model and parameters

The parameter estimation was not straight forward. Different methods, such as
linear regression for one parameter at a time, multiple linear regression for all
parameters and EFK have been used, and all of them gave different parameter
sets. Residual analysis was used to determine which parameter set gave best
result. Due to the lack of a positioning sensor, only theoretical values for the
angle θ and angular velocity ω, could be compared with the estimated results.
The precalculated values for the angular velocity ω was a constant value. This
is true for the real system in a way that at least the mean of the actual velocity
has that value. Apart from this mean value it was impossible to know if the
variations in the estimated velocities were in accordance with the system. This
made the parameter determination difficult since several parameters gave similar
results, and a positioning sensor had been helpful.
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One observation of the results is that the estimations of the rotor angle often
gives small constant biases. One explanation for this could be that the datasets
are collected when the motor is rotating at a constant velocity and then when the
dataset is used in a simulation the model starts at velocity zero. It is a possibility
that there is an internal inertia in the model to overcome before the modelled
motor can rotate as expected and this may create the biases seen in the results.

The model used in this thesis is a model based on basic electrical and mechan-
ical equations. All system properties are not covered with the chosen model. One
example is that the electrical equations neglects the position and current depen-
dence of the magnetic flux linkage and inductance. It is possible that the results
would have been closer to the reference system if this dependence would have
been added in the model. However, this would have increased the complexity
and made all calculations more time consuming. A too complex model could
also make estimations worse. In this thesis, focus was on creating a model to
an estimator, which in the future should be possible to implement in a robot.
Therefore the less complex model was preferable. Also the fact that authors in
[2], [14] and [15] presented good result with the basic model made it natural to
implement that model.

9.1.2 EKF and load angle

The results from the EKF estimations showed good results. This provides that
the model was a good choice. In the estimated velocity it is possible to see a noisy
variation. As mentioned earlier this variation could be explained by the motor
design. Because the motor takes steps by exiting its motor phases, the motion
will not be completely smooth. However, without a positioning sensor it is not
possible to say exactly how realistic these shown variations are, just that it is
likely that some variations will exist.

The result of the load angle estimate seems promising. The relation between
the load torque and load angle shows the sinusoidal appearance as expected.
However it was also expected that the load angle would be zero when the load
torque was zero. As seen in the results the load angle is around 0.17 when the
load torque is zero. The reason for this could be that the internal rotor torque,
such as the detent torque or the torque produced due to friction, also affects the
load angle.

When the motor is completely stalled the load angle varies rapidly. This is
reasonable since a stall makes the rotor stop in one position fixing the back EMF
vector. Meanwhile the current vector rotates with the excitation changes in the
phases and therefore the load angle will change.

All implementation and calculations done in this master thesis are performed
with collected data with a very high sample time, almost 30 kHz. In a future
implementation it is not possible to sample data this fast. The reason for why the
data were collected with this sample rate were because the phase voltage changed
very rapidly and when designing the model it was of interest to capture all model
properties.
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9.2 Future work

Since the EKF and the load angle has shown promising result it would be very
interesting to take the evaluation of the hybrid stepper motor to the next level.
This chapter will present suggestions for future work that can be done in the
area.

The first thing to investigate is how the estimated data will change if the sam-
ple frequency changes. To sample the phase current at a lower rate should not be
a problem. However problems could occur when it comes to the rapidly changing
phase voltage.

9.2.1 Parameter determination

As mentioned in the previous discussion it was hard to distinguish different
datasets from each other. In the report the prediction error is studied together
with residual analysis. Another method to distinguish datasets with similar bi-
ases is to look at the root mean square, RMS, which is a measure of the variation.
The RMS may give other datasets with better performance.

For determining the friction constant B, an assumption was made that the
velocity decreases linearly to zero. Further it was discussed that this assumption
may be incorrect and therefore an approach where the velocity were assumed
to decrease exponential were tested. In the report a conclusion were made that
there were to many unknown signals to be able to determine B. However, when
the rotor rotates it creates an induced voltage which affects the phase voltage of
the system. When the power of the system is cut the measured phase voltage is
assumed to be the induced voltage. Because of this, an assumption could made
that the relation between the rotor angular velocity and the phase voltage is

ω ∝ V (9.1)

Equation (6.3) can therefore be rewritten as

V = V (0) exp
(
−B
J
t
)

(9.2)

To determine B linear regression can be used where

Y = ln

(
V
V (0)

)
(9.3)

and

X =
t
J

(9.4)

By using a dataset of the phase voltage when the power is cut and the motor decel-
erates it is possible to determine B. Maybe this method can be used to determine
a better data set.
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9.2.2 Extended Kalman Filter

In the EKF today, the load torque is seen as an unknown disturbance. However
it could be of interest to estimate the load torque as well. To make this possible a
model of the load torque needs to be developed. Since the robot shall be able to
operate in very varying areas it could be difficult to create a model that covers all
variations. However authors in [14] states that even a simple model of the load
torque can provide good estimates and the area would therefore be interesting to
investigate.

9.2.3 Load angle

To determine the load angle a test bench for breaking the motor was used. With
this equipment it was possible to increase the load torque and observe how the
load angle changed. The information given from the load angel can be used to
control the applied current when the robot reaches an uphill or an obstacle. To
be able to do an accurate current control it is also important to know how the
load angle is affected when the robot reaches a downhill, and the load torque is
negative. To be able to investigate this an experiment can be made where the
motor is pushed by another motor.

The load angle varies when there is a change in load torque or current. This is
because a change in the current changes the produced torque. Also the velocity
can affect the load angle since a higher velocity reduces the produced torque.
I order to utilize all information in the load angle it could be of high interest
to investigate how the relationship between the load angle and the load torque
changes for different velocities and currents.

When the behaviour of the load angle is known it can be used for stall de-
tection. The most simple way is to implement a threshold function as adapts
with the rotor speed and the applied load torque. This implementation can for
example be used to detect collisions.
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Conclusions

This master thesis has investigated the possibilities to replace a BLDC-motor and
a gearbox with a hybrid stepper motor. The main goal was to develop a possible
estimator for estimating information about the motor that could be used in a
future speed and torque control algorithm.

This thesis work has been treating modelling and estimations of a hybrid step-
per motor. For modelling fundamental electrical and mechanical equations were
used. Decisions were made that a model based on these equations will be able
to describe the needed system behaviour and therefore an extended model were
not developed. It is advantageous to use the basic model in a future implemen-
tation because it will be less time consuming as a more complex model. A major
problem with the modelling has been the lack of a positioning sensor. This made
it difficult do determine which parameter set that best described the real system.
There is a possibility that other parameter sets can describe the system better.

For estimations of the rotor angle and angular velocity an EKF has been tested.
The EKF is used because it allows the model to be nonlinear. When tuned cor-
rectly the EKF gives good results of the estimations. Also here a problem oc-
curred due to the lack of a positioning sensor because the data to compare with
was not as accurate as might have been desirable.

As a complement to the EKF estimates the load angle was investigated. The
relation between the load angle and the load torque would, according to authors
in [7], be sinusoidal and that was also the result of the investigation in this thesis.
For implementing the load angle estimation the sliding discrete fourier transform
was used. This variant of the fourier transform makes it possible to update the
load angle estimate in a more efficient way.

The goal of this master thesis was to investigate the possibility to develop a
sensorless estimator to a Hybrid Stepper Motor. This to examine if it is possible
to replace a BLDC-motor together with a gearbox with a Hybrid Stepper motor.
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It was shown that an EKF which estimates the rotor angle and rotor angular ve-
locity, together with a load angle estimate should be able to give enough feedback
to a controller. The results of this thesis can be used as a basis for further investi-
gations on the Hybrid Stepper motor. This to decide whether a stepper motor is
a good alternative for propulsion of autonomous lawn mowing robots.
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