Hide menu

Abstract



Development of Push Control Strategy for Diesel-Electric Powertrains


In diesel-electric powertrains, the wheels are mechanically decoupled from the internal combustion engine (ICE). The conventional control approach for such a powertrain is to let the driver control the traction motor while the ICE realizes speed control, causing power to be pulled through the powertrain. An alternative approach is to push power forward by letting the driver control the ICE instead. In this thesis, a conceptual simulation model of a diesel-electric powertrain is compiled and the charcteristics of this novel approach investigated. It is concluded that the new approach makes full ICE power utilization possible even with engine performance reductions present, and also that it handles load prioritization in a natural way. However, takeoff from standstill and low-speed driving become difficult due to the effective gear ratio growing towards infinity for decreasing vehicle speed, causing high traction torques at low speed.

Johannes Bodin

2018

Download Article (pdf-file)Show BibTeX entry

Page responsible: webmaster
Last updated: 2019-08-05