Göm meny


Optimal Vehicle Speed Control Using a Model Predictive Controller for an Overactuated Vehicle

To control the speed of an overactuated vehicle there may be many possible ways to use the actuators of the car achieving the same outcome. The actuators in an ordinary car is a combustion engine and a friction brake. In some cases it is trivial how to coordinate actuators for the optimal result, but in many cases it is not. The goal with the thesis is to investigate if it is possible to achieve the same or improved performance with a more sophisticated control structure than today’s, using a model predictive controller. A model predictive controller combines the possibility to predict the outcome through an open-loop controller with the stability of a closed loop controller and gives the optimal solution for a finite horizon optimization problem. A simple model of the longitudinal dynamics of a car is developed and used in the model predictive controller framework. This is then used in simulations and in a real car. It is shown that it is possible to replace the current controller structure with a model predictive controller, but there are advantages and disadvantages with the new control structure.

Mathias Mattsson and Rasmus Mehler


Download Article (pdf-file)Show BibTeX entry

Informationsansvarig: webmaster
Senast uppdaterad: 2019-03-29